Suppr超能文献

一种基于光学卫星图像检测输电线路铁塔的改进YOLOv8网络

An Improved YOLOv8 Network for Detecting Electric Pylons Based on Optical Satellite Image.

作者信息

Chi Xin, Sun Yu, Zhao Yingjun, Lu Donghua, Gao Yan, Zhang Yiting

机构信息

Beijing Research Institute of Uranium Geology, Beijing 100029, China.

National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, Beijing 100029, China.

出版信息

Sensors (Basel). 2024 Jun 20;24(12):4012. doi: 10.3390/s24124012.

Abstract

Electric pylons are crucial components of power infrastructure, requiring accurate detection and identification for effective monitoring of transmission lines. This paper proposes an innovative model, the EP-YOLOv8 network, which incorporates new modules: the DSLSK-SPPF and EMS-Head. The DSLSK-SPPF module is designed to capture the surrounding features of electric pylons more effectively, enhancing the model's adaptability to the complex shapes of these structures. The EMS-Head module enhances the model's ability to capture fine details of electric pylons while maintaining a lightweight design. The EP-YOLOv8 network optimizes traditional YOLOv8n parameters, demonstrating a significant improvement in electric pylon detection accuracy with an average mAP@0.5 value of 95.5%. The effective detection of electric pylons by the EP-YOLOv8 demonstrates its ability to overcome the inefficiencies inherent in existing optical satellite image-based models, particularly those related to the unique characteristics of electric pylons. This improvement will significantly aid in monitoring the operational status and layout of power infrastructure, providing crucial insights for infrastructure management and maintenance.

摘要

输电塔是电力基础设施的关键组成部分,为有效监测输电线路,需要对其进行精确检测和识别。本文提出了一种创新模型,即EP-YOLOv8网络,该模型纳入了新的模块:DSLSK-SPPF和EMS-Head。DSLSK-SPPF模块旨在更有效地捕捉输电塔的周围特征,增强模型对这些结构复杂形状的适应性。EMS-Head模块在保持轻量级设计的同时,增强了模型捕捉输电塔精细细节的能力。EP-YOLOv8网络优化了传统的YOLOv8n参数,在输电塔检测精度方面有显著提高,平均mAP@0.5值达到95.5%。EP-YOLOv8对输电塔的有效检测表明,它能够克服现有基于光学卫星图像的模型所固有的低效问题,特别是那些与输电塔独特特征相关的问题。这一改进将极大地有助于监测电力基础设施的运行状态和布局,为基础设施管理和维护提供关键见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验