Suppr超能文献

BL-YOLOv8:一种基于YOLOv8的改进型道路缺陷检测模型。

BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8.

作者信息

Wang Xueqiu, Gao Huanbing, Jia Zemeng, Li Zijian

机构信息

School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China.

Shandong Key Laboratory of Intelligent Building Technology, Jinan 250101, China.

出版信息

Sensors (Basel). 2023 Oct 10;23(20):8361. doi: 10.3390/s23208361.

Abstract

Road defect detection is a crucial task for promptly repairing road damage and ensuring road safety. Traditional manual detection methods are inefficient and costly. To overcome this issue, we propose an enhanced road defect detection algorithm called BL-YOLOv8, which is based on YOLOv8s. In this study, we optimized the YOLOv8s model by reconstructing its neck structure through the integration of the BiFPN concept. This optimization reduces the model's parameters, computational load, and overall size. Furthermore, to enhance the model's operation, we optimized the feature pyramid layer by introducing the SimSPPF module, which improves its speed. Moreover, we introduced LSK-attention, a dynamic large convolutional kernel attention mechanism, to expand the model's receptive field and enhance the accuracy of object detection. Finally, we compared the enhanced YOLOv8 model with other existing models to validate the effectiveness of our proposed improvements. The experimental results confirmed the effective recognition of road defects by the improved YOLOv8 algorithm. In comparison to the original model, an improvement of 3.3% in average precision mAP@0.5 was observed. Moreover, a reduction of 29.92% in parameter volume and a decrease of 11.45% in computational load were achieved. This proposed approach can serve as a valuable reference for the development of automatic road defect detection methods.

摘要

道路缺陷检测是及时修复道路损坏和确保道路安全的一项关键任务。传统的人工检测方法效率低下且成本高昂。为克服这一问题,我们提出了一种名为BL-YOLOv8的增强型道路缺陷检测算法,该算法基于YOLOv8s。在本研究中,我们通过整合BiFPN概念来重构其颈部结构,从而对YOLOv8s模型进行了优化。这种优化减少了模型的参数、计算量和整体大小。此外,为提升模型的运算速度,我们引入了SimSPPF模块对特征金字塔层进行优化,提高了其速度。而且,我们引入了LSK-attention,一种动态大卷积核注意力机制,以扩大模型的感受野并提高目标检测的准确性。最后,我们将增强后的YOLOv8模型与其他现有模型进行比较,以验证我们所提出改进措施的有效性。实验结果证实了改进后的YOLOv8算法能有效识别道路缺陷。与原始模型相比,平均精度mAP@0.5提高了3.3%。此外,参数量减少了29.92%,计算量降低了11.45%。该方法可为自动道路缺陷检测方法的发展提供有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b61/10610575/b738c46db403/sensors-23-08361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验