Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York.
Biophys J. 2024 Aug 20;123(16):2584-2593. doi: 10.1016/j.bpj.2024.06.025. Epub 2024 Jun 25.
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
我们比较了在 1,2-二油酰基-sn-甘油-3-磷酸胆碱/1,2-二油酰基-sn-甘油-3-磷酸-L-丝氨酸(DOPC/DOPS)双层中重建的甲型流感 M2(IM2)蛋白跨膜结构域(TMD)的构象与在保留其天然蛋白质和脂质的分离大肠杆菌(E. coli)膜中的构象。IM2 是一种已知组装成同源四聚质子通道的单次跨膜蛋白。为了代表这个通道,我们构建了一个包含 IM2 的 TMD 区域的构建体,该区域被跨膜残基包围。位于双层极性区域的亮氨酸中的 L43C 单个半胱氨酸取代被甲硫基磺酸盐氮氧自由基标签进行电子自旋共振(ESR)研究。对于这个特殊的残基,我们使用连续波 ESR 和双电子-电子共振(DEER)光谱研究了在 DOPC/DOPS 和分离的大肠杆菌膜中重建的带自旋标记的 IM2 的构象。总蛋白与脂质的摩尔比范围从 1:230 到 1:10,400。在两种环境下,连续波 ESR 光谱对应于非常缓慢的自旋标记运动。在所有情况下,DEER 数据都被重建为距离分布,在距离和幅度比分别为 1.41 ± 0.2 和 2:1 时,在 1.68 和 2.37nm 处具有很好分辨的峰。这表明四个氮氧自由基自旋标记位于正方形的四个角上,表明四聚体具有轴对称性。应用于 NMR 分子结构(PDB:2L0J)的分子建模软件对 DEER 数据的距离建模证实了 IM2 TMD 四聚体的 C 末端出口孔的对称性和关闭状态与该模型一致。因此,我们可以得出结论,在本研究中使用的 pH 7.4 条件下,IM2 TMD 在模型脂质双层和由天然大肠杆菌脂质和蛋白质组成的膜中的构象相似,尽管大肠杆菌膜的复杂性由其脂质多样性和大量的整合和外周膜蛋白引起。