Nematollahi Mohammad Ali, Askarinejad Amir, Asadollahi Arefeh, Bazrafshan Mehdi, Sarejloo Shirin, Moghadami Mana, Sasannia Sarvin, Farjam Mojtaba, Homayounfar Reza, Pezeshki Babak, Amini Mitra, Roshanzamir Mohamad, Alizadehsani Roohallah, Bazrafshan Hanieh, Bazrafshan Drissi Hamed, Tan Ru-San, Acharya U Rajendra, Islam Mohammed Shariful Sheikh
Department of Computer Sciences, Fasa University, Fasa, Iran.
Student research committee, Shiraz University of Medical Science, Shiraz, Iran.
J Diabetes Metab Disord. 2023 Nov 27;23(1):773-781. doi: 10.1007/s40200-023-01350-x. eCollection 2024 Jun.
We applied machine learning to study associations between regional body fat distribution and diabetes mellitus in a population of community adults in order to investigate the predictive capability. We retrospectively analyzed a subset of data from the published Fasa cohort study using individual standard classifiers as well as ensemble learning algorithms.
We measured segmental body composition using the Tanita Analyzer BC-418 MA (Tanita Corp, Japan). The following features were input to our machine learning model: fat-free mass, fat percentage, basal metabolic rate, total body water, right arm fat-free mass, right leg fat-free mass, trunk fat-free mass, trunk fat percentage, sex, age, right leg fat percentage, and right arm fat percentage. We performed classification into diabetes vs. no diabetes classes using linear support vector machine, decision tree, stochastic gradient descent, logistic regression, Gaussian naïve Bayes, k-nearest neighbors (k = 3 and k = 4), and multi-layer perceptron, as well as ensemble learning using random forest, gradient boosting, adaptive boosting, XGBoost, and ensemble voting classifiers with Top3 and Top4 algorithms. 4661 subjects (mean age 47.64 ± 9.37 years, range 35 to 70 years; 2155 male, 2506 female) were analyzed and stratified into 571 and 4090 subjects with and without a self-declared history of diabetes, respectively.
Age, fat mass, and fat percentages in the legs, arms, and trunk were positively associated with diabetes; fat-free mass in the legs, arms, and trunk, were negatively associated. Using XGBoost, our model attained the best excellent accuracy, precision, recall, and F1-score of 89.96%, 90.20%, 89.65%, and 89.91%, respectively.
Our machine learning model showed that regional body fat compositions were predictive of diabetes status.
我们应用机器学习研究社区成年人群中局部体脂分布与糖尿病之间的关联,以调查预测能力。我们使用个体标准分类器以及集成学习算法,对已发表的法萨队列研究中的一部分数据进行了回顾性分析。
我们使用百利达BC - 418 MA人体成分分析仪(日本百利达公司)测量身体各部位的成分。以下特征被输入到我们的机器学习模型中:去脂体重、脂肪百分比、基础代谢率、全身水分、右臂去脂体重、右腿去脂体重、躯干去脂体重、躯干脂肪百分比、性别、年龄、右腿脂肪百分比和右臂脂肪百分比。我们使用线性支持向量机、决策树、随机梯度下降、逻辑回归、高斯朴素贝叶斯、k近邻(k = 3和k = 4)以及多层感知器进行糖尿病与非糖尿病类别的分类,同时使用随机森林、梯度提升、自适应提升、XGBoost以及采用Top3和Top4算法的集成投票分类器进行集成学习。对4661名受试者(平均年龄47.64 ± 9.37岁,范围35至70岁;男性2155名,女性2506名)进行了分析,并分别将其分为有和没有自我申报糖尿病病史的571名和4090名受试者。
腿部、手臂和躯干的年龄、脂肪量和脂肪百分比与糖尿病呈正相关;腿部、手臂和躯干的去脂体重与糖尿病呈负相关。使用XGBoost,我们的模型分别获得了最佳的优异准确率、精确率、召回率和F1分数,分别为89.96%、90.20%、89.65%和89.91%。
我们的机器学习模型表明,局部体脂成分可预测糖尿病状态。