Suppr超能文献

一项利用机器学习对身体成分预测糖尿病能力的队列研究。

A cohort study on the predictive capability of body composition for diabetes mellitus using machine learning.

作者信息

Nematollahi Mohammad Ali, Askarinejad Amir, Asadollahi Arefeh, Bazrafshan Mehdi, Sarejloo Shirin, Moghadami Mana, Sasannia Sarvin, Farjam Mojtaba, Homayounfar Reza, Pezeshki Babak, Amini Mitra, Roshanzamir Mohamad, Alizadehsani Roohallah, Bazrafshan Hanieh, Bazrafshan Drissi Hamed, Tan Ru-San, Acharya U Rajendra, Islam Mohammed Shariful Sheikh

机构信息

Department of Computer Sciences, Fasa University, Fasa, Iran.

Student research committee, Shiraz University of Medical Science, Shiraz, Iran.

出版信息

J Diabetes Metab Disord. 2023 Nov 27;23(1):773-781. doi: 10.1007/s40200-023-01350-x. eCollection 2024 Jun.

Abstract

PURPOSE

We applied machine learning to study associations between regional body fat distribution and diabetes mellitus in a population of community adults in order to investigate the predictive capability. We retrospectively analyzed a subset of data from the published Fasa cohort study using individual standard classifiers as well as ensemble learning algorithms.

METHODS

We measured segmental body composition using the Tanita Analyzer BC-418 MA (Tanita Corp, Japan). The following features were input to our machine learning model: fat-free mass, fat percentage, basal metabolic rate, total body water, right arm fat-free mass, right leg fat-free mass, trunk fat-free mass, trunk fat percentage, sex, age, right leg fat percentage, and right arm fat percentage. We performed classification into diabetes vs. no diabetes classes using linear support vector machine, decision tree, stochastic gradient descent, logistic regression, Gaussian naïve Bayes, k-nearest neighbors (k = 3 and k = 4), and multi-layer perceptron, as well as ensemble learning using random forest, gradient boosting, adaptive boosting, XGBoost, and ensemble voting classifiers with Top3 and Top4 algorithms. 4661 subjects (mean age 47.64 ± 9.37 years, range 35 to 70 years; 2155 male, 2506 female) were analyzed and stratified into 571 and 4090 subjects with and without a self-declared history of diabetes, respectively.

RESULTS

Age, fat mass, and fat percentages in the legs, arms, and trunk were positively associated with diabetes; fat-free mass in the legs, arms, and trunk, were negatively associated. Using XGBoost, our model attained the best excellent accuracy, precision, recall, and F1-score of 89.96%, 90.20%, 89.65%, and 89.91%, respectively.

CONCLUSIONS

Our machine learning model showed that regional body fat compositions were predictive of diabetes status.

摘要

目的

我们应用机器学习研究社区成年人群中局部体脂分布与糖尿病之间的关联,以调查预测能力。我们使用个体标准分类器以及集成学习算法,对已发表的法萨队列研究中的一部分数据进行了回顾性分析。

方法

我们使用百利达BC - 418 MA人体成分分析仪(日本百利达公司)测量身体各部位的成分。以下特征被输入到我们的机器学习模型中:去脂体重、脂肪百分比、基础代谢率、全身水分、右臂去脂体重、右腿去脂体重、躯干去脂体重、躯干脂肪百分比、性别、年龄、右腿脂肪百分比和右臂脂肪百分比。我们使用线性支持向量机、决策树、随机梯度下降、逻辑回归、高斯朴素贝叶斯、k近邻(k = 3和k = 4)以及多层感知器进行糖尿病与非糖尿病类别的分类,同时使用随机森林、梯度提升、自适应提升、XGBoost以及采用Top3和Top4算法的集成投票分类器进行集成学习。对4661名受试者(平均年龄47.64 ± 9.37岁,范围35至70岁;男性2155名,女性2506名)进行了分析,并分别将其分为有和没有自我申报糖尿病病史的571名和4090名受试者。

结果

腿部、手臂和躯干的年龄、脂肪量和脂肪百分比与糖尿病呈正相关;腿部、手臂和躯干的去脂体重与糖尿病呈负相关。使用XGBoost,我们的模型分别获得了最佳的优异准确率、精确率、召回率和F1分数,分别为89.96%、90.20%、89.65%和89.91%。

结论

我们的机器学习模型表明,局部体脂成分可预测糖尿病状态。

相似文献

1
A cohort study on the predictive capability of body composition for diabetes mellitus using machine learning.
J Diabetes Metab Disord. 2023 Nov 27;23(1):773-781. doi: 10.1007/s40200-023-01350-x. eCollection 2024 Jun.
2
Body composition predicts hypertension using machine learning methods: a cohort study.
Sci Rep. 2023 Apr 27;13(1):6885. doi: 10.1038/s41598-023-34127-6.
4
Human lung cancer classification and comprehensive analysis using different machine learning techniques.
Microsc Res Tech. 2025 Jan;88(1):234-250. doi: 10.1002/jemt.24682. Epub 2024 Sep 18.
6
Prediction and feature selection of low birth weight using machine learning algorithms.
J Health Popul Nutr. 2024 Oct 12;43(1):157. doi: 10.1186/s41043-024-00647-8.
8
A machine learning classifier-based approach for diabetes mellitus risk prediction.
Biomed Phys Eng Express. 2024 Oct 10. doi: 10.1088/2057-1976/ad857b.
9
Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques.
PLoS One. 2025 Jan 9;20(1):e0312914. doi: 10.1371/journal.pone.0312914. eCollection 2025.

引用本文的文献

1
Evolution of diabetes prediction using the fusion of ANOVA, ADASYN technique and XGBoost based on body composition data.
J Diabetes Metab Disord. 2025 Jun 17;24(2):151. doi: 10.1007/s40200-025-01661-1. eCollection 2025 Dec.
3
Electrical bioimpedance in the era of artificial intelligence.
J Electr Bioimpedance. 2024 Jan 26;15(1):1-3. doi: 10.2478/joeb-2024-0001. eCollection 2024 Jan.

本文引用的文献

2
Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes.
J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):2154-2162. doi: 10.1002/jcsm.12822. Epub 2021 Sep 30.
4
Body fat predicts exercise capacity in persons with Type 2 Diabetes Mellitus: A machine learning approach.
PLoS One. 2021 Mar 31;16(3):e0248039. doi: 10.1371/journal.pone.0248039. eCollection 2021.
5
Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses.
Diabetologia. 2021 Feb;64(2):275-287. doi: 10.1007/s00125-020-05319-w. Epub 2020 Dec 14.
6
Mid-upper arm circumference as a simple tool for identifying central obesity and insulin resistance in type 2 diabetes.
PLoS One. 2020 May 21;15(5):e0231308. doi: 10.1371/journal.pone.0231308. eCollection 2020.
8
Age at Diagnosis of Type 2 Diabetes Mellitus and Associations With Cardiovascular and Mortality Risks.
Circulation. 2019 May 7;139(19):2228-2237. doi: 10.1161/CIRCULATIONAHA.118.037885.
9
Correlation between basal metabolic rate, visceral fat and insulin resistance among type 2 diabetes mellitus with peripheral neuropathy.
Diabetes Metab Syndr. 2019 Jan-Feb;13(1):344-348. doi: 10.1016/j.dsx.2018.10.005. Epub 2018 Oct 10.
10
Body composition analysis, anthropometric indices and lipid profile markers as predictors for prediabetes.
PLoS One. 2018 Aug 16;13(8):e0200775. doi: 10.1371/journal.pone.0200775. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验