Duan Qin, Xu Zhengchuan, Hu Qing, Luo Siyang
Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou 510006, China.
Fudan University, Shanghai 200433, China.
Fundam Res. 2021 Oct 29;2(2):303-310. doi: 10.1016/j.fmre.2021.10.002. eCollection 2022 Mar.
As the weakest links in information security defense are the individuals in an organizations, it is important to understand their information security behaviors. In the current study, we tested whether the neural variability pattern could predict an individual's intention to engage in information security violations. Because cognitive neuroscience methods can provide a new perspective into psychological processes without common methodological biases or social desirability, we combined an adapted version of the information security paradigm (ISP) with functional magnetic resonance imaging (fMRI) technology. While completing an adapted ISP task, participants underwent an fMRI scan. We adopted a machine learning method to build a neural variability predictive model. Consistent with previous studies, we found that people were more likely to take actions under neutral conditions than in minor violation contexts and major violation contexts. Moreover, the neural variability predictive model, including nodes within the task control, default mode, visual, salience and attention networks, can predict information security violation intentions. These results illustrate the predictive value of neural variability for information security violations and provide a new perspective for combining ISP with the fMRI technique to explore a neural predictive model of information security violation intention.
由于组织中的个体是信息安全防御中最薄弱的环节,了解他们的信息安全行为很重要。在当前的研究中,我们测试了神经变异性模式是否可以预测个体进行信息安全违规行为的意图。由于认知神经科学方法可以为心理过程提供一个没有常见方法偏差或社会期望性的新视角,我们将信息安全范式(ISP)的一个改编版本与功能磁共振成像(fMRI)技术相结合。在完成改编后的ISP任务时,参与者接受了fMRI扫描。我们采用机器学习方法构建了一个神经变异性预测模型。与之前的研究一致,我们发现人们在中性条件下比在轻微违规情境和重大违规情境中更有可能采取行动。此外,包括任务控制、默认模式、视觉、突显和注意力网络中的节点在内的神经变异性预测模型可以预测信息安全违规意图。这些结果说明了神经变异性对信息安全违规行为的预测价值,并为将ISP与fMRI技术相结合以探索信息安全违规意图的神经预测模型提供了一个新视角。