Raj R Samuvel, Arulraj G Prince, Anand N, Kanagaraj Balamurali, Naser M Z, Lubloy Eva
Research Scholar, Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India.
AI Research Institute for Science and Engineering (AIRISE), Clemson University, Clemson, SC 29634, USA.
Heliyon. 2024 Jun 2;10(11):e32206. doi: 10.1016/j.heliyon.2024.e32206. eCollection 2024 Jun 15.
The study assesses the mechanical efficiency, long-lasting characteristics, microstructure, and sustainability of sustainable concrete (SC) samples through several optimization methods, emphasizing the significance of the 3Rs (recycle, reuse, reduce) approach in the construction sector. The study uses advanced techniques like the Taguchi method, grey relational analysis (GRA), analysis of variance (ANOVA), and signal-noise ratio (SNR) to optimize parameters affecting the performance of SC. In this study, the properties of SC are assessed by considering various parameters. These parameters include the use of 10 %, 20 %, and 30 % of ground granulated blast furnace slag (GGBFS) as a replacement for fly ash (FA). Additionally, six different binder contents ranging from 300 kg/m to 600 kg/m are examined. The study also investigates three different molarities of sodium hydroxide (NaOH) (8 M, 12 M, and 16 M), three different ratios of alkaline activators (AA) (1.5, 2.0, and 2.5), three different AA to-binder ratios (0.30, 0.35, and 0.40), and curing temperature (CT) of 30 °C, 60 °C, and 90 °C. The study includes fresh properties such as fresh density (FD) and slump, mechanical properties such as tensile strength (TS), flexural strength (FS), modulus of elasticity (MOE), and compressive strength (CS), and durability studies such as dry density (DD), impact strength, water absorption (WA), and sorptivity. The blended proportions were obtained using the Taguchi method. The study shows that GGBFS accelerates geopolymerization in FA-based concrete, reducing setting time and early-age CS. FA is crucial for setting time, workability, and CS enhancement. GGBFS increases the densities of fresh and hardened concrete, with a highly correlated increase, allowing accurate hardened density prediction with a coefficient of 0.9057. The CS of the cube SC surpassed 40 MPa, irrespective of variables such as the AA ratio, CT, and NaOH molarity. The trail mix with a binder concentration of 600 kg/m, 30 % GGBFS content, 12 M NaOH molarity, 1.5 AA ratio, 0.35 AA to binder ratio, and 90 °C CT exhibited the greatest strength. Mixtures containing 10 % GGBFS can attain a CS above 30 MPa after 28 days, making them suitable for structural purposes. The T mix exhibited a compact Calcium (alumino) silicate hydrate (C-A-S-H) and N-A-S-H gel, whereas the T mix displayed a varied and permeable structure. The study used GRA, ANOVA, and SNR methods to analyze properties varying by six variables, finding GGBFS content as the most influencing parameter. The study found that the SC had a lower sustainability score than the OPC mix, but had better energy efficiency.
该研究通过多种优化方法评估了可持续混凝土(SC)样品的机械效率、持久特性、微观结构和可持续性,强调了建筑行业中3R(回收、再利用、减少)方法的重要性。该研究使用田口方法、灰色关联分析(GRA)、方差分析(ANOVA)和信噪比(SNR)等先进技术来优化影响SC性能的参数。在本研究中,通过考虑各种参数来评估SC的性能。这些参数包括使用10%、20%和30%的磨细粒化高炉矿渣(GGBFS)替代粉煤灰(FA)。此外,还研究了六种不同的胶凝材料用量,范围从300kg/m³到600kg/m³。该研究还考察了三种不同摩尔浓度的氢氧化钠(NaOH)(8M、12M和16M)、三种不同的碱性激发剂(AA)比例(1.5、2.0和2.5)、三种不同的AA与胶凝材料比例(0.30、0.35和0.40)以及30°C、60°C和90°C的养护温度(CT)。该研究包括新拌性能,如新鲜密度(FD)和坍落度;力学性能,如抗拉强度(TS)、抗弯强度(FS)、弹性模量(MOE)和抗压强度(CS);以及耐久性研究,如干密度(DD)、冲击强度、吸水率(WA)和吸水量。混合比例采用田口方法获得。研究表明,GGBFS可加速基于FA的混凝土中的地质聚合反应,缩短凝结时间并提高早期抗压强度。FA对于凝结时间、工作性和抗压强度的提高至关重要。GGBFS增加了新拌混凝土和硬化混凝土的密度,且两者高度相关,可通过系数0.9057准确预测硬化密度。无论AA比例、CT和NaOH摩尔浓度等变量如何,立方体SC的抗压强度均超过40MPa。胶凝材料浓度为600kg/m³、GGBFS含量为30%、NaOH摩尔浓度为12M、AA比例为1.5、AA与胶凝材料比例为0.35且养护温度为90°C的试验混合物表现出最大强度。含10%GGBFS的混合物在28天后抗压强度可达到30MPa以上,使其适用于结构用途。T混合物呈现出致密的钙(铝)硅酸盐水合物(C-A-S-H)和N-A-S-H凝胶,而T混合物则呈现出多样且可渗透的结构。该研究使用GRA、ANOVA和SNR方法分析六个变量变化时的性能,发现GGBFS含量是最具影响的参数。研究发现,SC的可持续性得分低于OPC混合物,但能源效率更高。