Suppr超能文献

基于肌电图的步向预测,以更好地控制下肢可穿戴设备。

EMG-based prediction of step direction for a better control of lower limb wearable devices.

机构信息

Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy.

Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy.

出版信息

Comput Methods Programs Biomed. 2024 Sep;254:108305. doi: 10.1016/j.cmpb.2024.108305. Epub 2024 Jun 24.

Abstract

BACKGROUND AND OBJECTIVES

Lower-limb wearable devices can significantly improve the quality of life of subjects suffering from debilitating conditions, such as amputations, neurodegenerative disorders, and stroke-related impairments. Current control approaches, limited to forward walking, fall short of replicating the complexity of human locomotion in complex environments, such as uneven terrains or crowded places. Here we propose a high-level controller based on two Support Vector Machines exploiting four surface electromyography (EMG) signals of the thigh muscles to detect the onset (Toe-off intention decoder) and the direction (Directional EMG decoder) of the upcoming step.

METHODS AND MATERIALS

We validated a preliminary version of the approach by acquiring EMG signals from ten healthy subjects, performing steps in four directions (forward, backward, right, and left), in three different settings (ground-level walking, stairs, and ramps), and in both steady-state and static conditions. Both the Toe-off intention and Directional EMG decoders have been tested with a 5-fold cross-validation repeated five times, using linear and radial-basis-function kernels, and by changing the classification output timing, from 200 ms before to 50 ms after the toe-off.

RESULTS

The Toe-off intention decoder reached a median accuracy of 83.34 % (interquartile range (IQR): 6.48) and specificity of 92.72 % (IQR: 3.62) in its radial-basis-function version, while the Directional EMG decoder's median accuracy ranged between 73.92 % (IQR: 5.8), 200 ms before the toe-off, to 92.91 % (IQR: 4.11), 50 ms after the toe-off, with the radial-basis-function kernel implementation. For both the Toe-off intention and Directional EMG decoders the radial-basis-function version achieved better performances than the linear one (Wilcoxon signed rank test, p < 0.05).

CONCLUSIONS AND SIGNIFICANCE

The combination of the two decoders proved to be a promising solution to detect the step initiation and classify its direction, paving the way for wearable devices with a broader range of movements and more degrees of freedom, ultimately promoting usability in uncontrolled settings and better reactions to external perturbations. Additionally, the encumbrance of the setup is limited to the thigh of the leg of interest, which simplifies the implementation in compact devices, concurrently limiting the sensors worn by the subject.

摘要

背景与目的

下肢可穿戴设备可以显著提高患有衰弱性疾病(如截肢、神经退行性疾病和中风相关损伤)的受试者的生活质量。目前的控制方法仅限于向前行走,无法复制复杂环境(如不平坦的地形或拥挤的地方)中人类运动的复杂性。在这里,我们提出了一种基于两个支持向量机的高级控制器,利用大腿肌肉的四个表面肌电图(EMG)信号来检测即将到来的脚步的起始(抬脚意图解码器)和方向(方向 EMG 解码器)。

方法与材料

我们通过从十个健康受试者采集 EMG 信号,在四种方向(向前、向后、右和左)、三种不同设置(地面行走、楼梯和斜坡)和两种稳态和静态条件下进行实验,验证了该方法的初步版本。我们使用线性和径向基函数核,并通过改变分类输出时间(从抬脚前 200 毫秒到抬脚后 50 毫秒),对抬脚意图解码器和方向 EMG 解码器进行了五次 5 倍交叉验证测试。

结果

在径向基函数版本中,抬脚意图解码器的准确率中位数达到 83.34%(四分位距(IQR):6.48),特异性为 92.72%(IQR:3.62),而方向 EMG 解码器的准确率中位数范围在抬脚前 200 毫秒时为 73.92%(IQR:5.8)到抬脚后 50 毫秒时为 92.91%(IQR:4.11)之间,使用径向基函数核实现。对于抬脚意图解码器和方向 EMG 解码器,径向基函数版本的性能均优于线性版本(Wilcoxon 符号秩检验,p<0.05)。

结论与意义

两个解码器的组合被证明是检测步起始并对其方向进行分类的有前途的解决方案,为具有更广泛运动范围和更多自由度的可穿戴设备铺平了道路,最终促进了在不受控制的环境中的可用性和对外部干扰的更好反应。此外,该设置的负担仅限于感兴趣腿部的大腿,这简化了在紧凑设备中的实现,同时限制了受试者佩戴的传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验