Suppr超能文献

背侧periaqueductal 灰色中的 tonically active GABAergic 神经元控制小鼠的本能逃避反应。

Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice.

机构信息

UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.

UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.

出版信息

Curr Biol. 2024 Jul 8;34(13):3031-3039.e7. doi: 10.1016/j.cub.2024.05.068. Epub 2024 Jun 26.

Abstract

Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible. For example, escape probability depends on predation risk and competing motivations, and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time. This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape. In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor. Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2 dPAG neurons. Activity in VGAT dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.

摘要

逃避行为是一组使动物远离威胁的运动动作。虽然这些动作可以是刻板的,但它们具有灵活性对生存是有利的。例如,逃避的概率取决于捕食风险和竞争动机,而安全的飞行需要不断调整轨迹,并必须在适当的地点和时间终止。这种灵活性表明,调节成分(如抑制性网络)作用于控制本能逃避的神经回路。在小鼠中,从中脑的前馈电路实施逃避即将到来的威胁的决定,其中背侧导水管周围灰质(dPAG)中的兴奋性囊泡谷氨酸转运蛋白 2 阳性(VGluT2)神经元计算逃避启动和逃避活力。在这里,我们通过设置 dPAG 逃避网络的兴奋性来测试 dPAG 内局部 GABA 能神经元通过控制逃避行为的假设。使用体外膜片钳和体内神经活动记录,我们发现,囊泡 GABA 转运蛋白阳性(VGAT)dPAG 神经元在没有突触输入的情况下持续产生动作电位,并且是 VGluT2 dPAG 神经元的主要抑制源。在逃避开始时,VGAT dPAG 细胞的活动短暂减少,并在逃避过程中增加,在逃避结束时达到峰值。光遗传增加或减少 VGAT dPAG 活性会改变刺激在威胁开始时和刺激在逃避开始后传递时逃避的概率和持续时间。我们得出的结论是,持续放电的 VGAT dPAG 神经元的活动为逃避启动设置了阈值,并控制了飞行动作的执行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验