ScitoVation LLC, Research Triangle Park, Suite 146, NC, USA.
ScitoVation LLC, Research Triangle Park, Suite 146, NC, USA.
Toxicol Appl Pharmacol. 2024 Aug;489:117013. doi: 10.1016/j.taap.2024.117013. Epub 2024 Jun 25.
To identify pathway perturbations and examine biological modes of action (MOAs) for various perfluoroalkyl substances, we re-analyzed published in vitro gene expression studies from human primary liver spheroids. With treatment times ranging from 10 to 14 days, shorter-chain PFAS (those with 6 or fewer fluorinated carbon atoms in the alkyl chain) showed enrichment for pathways of fatty acid metabolism and fatty acid beta-oxidation with upregulated genes. Longer-chain PFAS compounds, specifically PFOS (perfluorooctane sulfonate), PFDS (perfluorodecane sulfonate), and higher doses of PFOA (perfluorooctanoic acid), had enrichment for pathways involved in steroid metabolism, fatty acid metabolism, and biological oxidation for downregulated genes. Although PFNA (perfluorononanoic acid), PFDA (perfluorodecanoic acid), and PFUnDA (perfluoroundecanoic acid) were more toxic and could only be examined after a 1-day treatment, all three had enrichment patterns similar to those observed with PFOS. With PFOA there were dose-dependent changes in pathway enrichment, shifting from upregulation of fatty acid metabolism and downregulation of steroid metabolism to downregulation of both at higher doses. The response to PFHpS (perfluoroheptanesulfonic acid) was similar to the PFOA pattern at the lower treatment dose. Based on results of transcription factor binding sites analyses, we propose that downregulation of pathways of lipid metabolism by longer chain PFAS may be due to inhibitory interactions of PPARD on genes controlled by PPARA and PPARG. In conclusion, our transcriptomic analysis indicates that the biological MOAs of PFAS compounds differ according to chain length and dose, and that risk assessments for PFAS should consider these differences in biological MOAs when evaluating mixtures of these compounds.
为了识别各种全氟烷基物质的途径扰动和研究其生物学作用模式(MOAs),我们重新分析了已发表的人类原代肝球体的体外基因表达研究。在处理时间从 10 天到 14 天的范围内,短链 PFAS(烷基链中含有 6 个或更少氟原子的物质)表现出脂肪酸代谢和脂肪酸β氧化途径的富集,上调了基因。长链 PFAS 化合物,特别是 PFOS(全氟辛烷磺酸)、PFDS(全氟癸烷磺酸)和较高剂量的 PFOA(全氟辛酸),则富集了参与类固醇代谢、脂肪酸代谢和生物氧化的途径,下调了基因。尽管 PFNA(全氟壬酸)、PFDA(全氟癸酸)和 PFUnDA(全氟十一烷酸)毒性更高,只能在 1 天处理后进行检测,但它们的富集模式与 PFOS 观察到的相似。对于 PFOA,随着剂量的增加,途径富集出现了剂量依赖性变化,从脂肪酸代谢的上调和类固醇代谢的下调转变为更高剂量时的两者均下调。PFHpS(全氟庚烷磺酸)的反应与较低处理剂量下的 PFOA 模式相似。基于转录因子结合位点分析的结果,我们提出长链 PFAS 下调脂质代谢途径可能是由于 PPARD 对 PPARA 和 PPARG 控制的基因的抑制性相互作用。总之,我们的转录组分析表明,PFAS 化合物的生物学 MOAs 因链长和剂量而异,在评估这些化合物的混合物时,PFAS 的风险评估应考虑这些生物学 MOAs 的差异。