Suppr超能文献

图度量学习量化了茎尖分生组织细胞两种基因型之间的形态差异。

Graph metric learning quantifies morphological differences between two genotypes of shoot apical meristem cells in .

作者信息

Braker Scott Cory, Mjolsness Eric, Oyen Diane, Kodera Chie, Uyttewaal Magalie, Bouchez David

机构信息

Department of Mathematics and Computer Science, Colorado College, Colorado Springs, CO 80903, USA.

Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.

出版信息

In Silico Plants. 2023;5(1). doi: 10.1093/insilicoplants/diad001. Epub 2023 Jan 30.

Abstract

We present a method for learning 'spectrally descriptive' edge weights for graphs. We generalize a previously known distance measure on graphs (graph diffusion distance [GDD]), thereby allowing it to be tuned to minimize an arbitrary loss function. Because all steps involved in calculating this modified GDD are differentiable, we demonstrate that it is possible for a small neural network model to learn edge weights which minimize loss. We apply this method to discriminate between graphs constructed from shoot apical meristem images of two genotypes of specimens: wild-type and triple mutants with cell division phenotype. Training edge weights and kernel parameters with contrastive loss produce a learned distance metric with large margins between these graph categories. We demonstrate this by showing improved performance of a simple -nearest-neighbour classifier on the learned distance matrix. We also demonstrate a further application of this method to biological image analysis. Once trained, we use our model to compute the distance between the biological graphs and a set of graphs output by a cell division simulator. Comparing simulated cell division graphs to biological ones allows us to identify simulation parameter regimes which characterize mutant versus wild-type cells. We find that mutant cells are characterized by increased randomness of division planes and decreased ability to avoid previous vertices between cell walls.

摘要

我们提出了一种为图学习“频谱描述性”边权重的方法。我们推广了一种先前已知的图上的距离度量(图扩散距离[GDD]),从而使其能够进行调整以最小化任意损失函数。由于计算这种修改后的GDD所涉及的所有步骤都是可微的,我们证明了一个小型神经网络模型有可能学习到能使损失最小化的边权重。我们将此方法应用于区分由两种基因型标本(野生型和具有细胞分裂表型的三重突变体)的茎尖分生组织图像构建的图。使用对比损失训练边权重和核参数会产生一种学习到的距离度量,在这些图类别之间具有较大的间隔。我们通过展示简单的k近邻分类器在学习到的距离矩阵上的性能提升来证明这一点。我们还展示了该方法在生物图像分析中的进一步应用。一旦训练完成,我们使用我们的模型来计算生物图与细胞分裂模拟器输出的一组图之间的距离。将模拟的细胞分裂图与生物图进行比较,使我们能够识别出表征突变体与野生型细胞的模拟参数范围。我们发现,突变体细胞的特征是分裂平面的随机性增加以及避免细胞壁之间先前顶点的能力下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abb/11210494/1b335a9777f0/nihms-1921965-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验