Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
Development. 2022 Aug 15;149(16). doi: 10.1242/dev.201024. Epub 2022 Aug 16.
Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.
细胞分裂以及由此导致的细胞组织变化会影响所有组织的形状和功能。因此,了解细胞分裂所导致的组织范围变化的决定因素是发育生物学中的一个关键问题。在这里,我们使用拟南芥茎尖分生组织(SAM)的活细胞成像数据的网络表示形式来预测细胞分裂事件及其在组织水平上的后果。我们表明,基于 SAM 网络特性的支持向量机分类器可以预测细胞分裂事件,其测试准确性为 76%,与仅基于细胞大小的准确性相当。此外,我们证明了拓扑和生物学特性(包括细胞大小、周长、细胞之间的距离和共用细胞壁)的组合可以进一步提高细胞分裂引发的拓扑变化的预测准确性。使用我们的分类器,我们证明了微管介导的细胞间生长协调在影响组织水平拓扑结构中的重要性。总的来说,我们基于网络的分析结果表明,在拟南芥 SAM 中存在组织拓扑结构和细胞分裂之间的反馈机制。