Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States.
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i490-i500. doi: 10.1093/bioinformatics/btae223.
Single-cell Hi-C (scHi-C) protocol helps identify cell-type-specific chromatin interactions and sheds light on cell differentiation and disease progression. Despite providing crucial insights, scHi-C data is often underutilized due to the high cost and the complexity of the experimental protocol. We present a deep learning framework, scGrapHiC, that predicts pseudo-bulk scHi-C contact maps using pseudo-bulk scRNA-seq data. Specifically, scGrapHiC performs graph deconvolution to extract genome-wide single-cell interactions from a bulk Hi-C contact map using scRNA-seq as a guiding signal. Our evaluations show that scGrapHiC, trained on seven cell-type co-assay datasets, outperforms typical sequence encoder approaches. For example, scGrapHiC achieves a substantial improvement of 23.2% in recovering cell-type-specific Topologically Associating Domains over the baselines. It also generalizes to unseen embryo and brain tissue samples. scGrapHiC is a novel method to generate cell-type-specific scHi-C contact maps using widely available genomic signals that enables the study of cell-type-specific chromatin interactions.
The GitHub link: https://github.com/rsinghlab/scGrapHiC contains the source code of scGrapHiC and associated scripts to preprocess publicly available datasets to produce the results and visualizations we have discuss in this manuscript.
单细胞 Hi-C(scHi-C)技术有助于鉴定细胞类型特异性染色质相互作用,并揭示细胞分化和疾病进展的机制。尽管 scHi-C 数据提供了至关重要的见解,但由于实验方案的成本高和复杂性,其往往未被充分利用。我们提出了一个深度学习框架 scGrapHiC,它使用伪群体 scRNA-seq 数据来预测伪群体 scHi-C 接触图谱。具体来说,scGrapHiC 通过图去卷积从批量 Hi-C 接触图谱中提取全基因组单细胞相互作用,使用 scRNA-seq 作为引导信号。我们的评估表明,在七个细胞类型共检测数据集上进行训练的 scGrapHiC 优于典型的序列编码器方法。例如,scGrapHiC 在恢复细胞类型特异性拓扑关联结构域方面的表现优于基线,其性能提高了 23.2%。它还可以推广到未见过的胚胎和脑组织样本。scGrapHiC 是一种使用广泛可用的基因组信号生成细胞类型特异性 scHi-C 接触图谱的新方法,它能够研究细胞类型特异性染色质相互作用。
GitHub 链接:https://github.com/rsinghlab/scGrapHiC 包含 scGrapHiC 的源代码以及相关脚本,用于预处理公开可用的数据集,以生成我们在本文中讨论的结果和可视化效果。