Suppr超能文献

去卷积 Hi-C 图谱描绘了具有不同生理特征组织细胞的染色质结构。

DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.

机构信息

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.

School of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Adv Sci (Weinh). 2023 Sep;10(27):e2301058. doi: 10.1002/advs.202301058. Epub 2023 Jul 28.

Abstract

Deciphering variations in chromosome conformations based on bulk three-dimensional (3D) genomic data from heterogenous tissues is a key to understanding cell-type specific genome architecture and dynamics. Surprisingly, computational deconvolution methods for high-throughput chromosome conformation capture (Hi-C) data remain very rare in the literature. Here, a deep convolutional neural network (CNN), deconvolve bulk Hi-C data (deCOOC) that remarkably outperformed all the state-of-the-art tools in the deconvolution task is developed. Interestingly, it is noticed that the chromatin accessibility or the Hi-C contact frequency alone is insufficient to explain the power of deCOOC, suggesting the existence of a latent embedded layer of information pertaining to the cell type specific 3D genome architecture. By applying deCOOC to in-house-generated bulk Hi-C data from visceral and subcutaneous adipose tissues, it is found that the characteristic chromatin features of M2 cells in the two anatomical loci are distinctively bound to different physiological functionalities. Taken together, deCOOC is both a reliable Hi-C data deconvolution method and a powerful tool for functional extraction of 3D genome architecture.

摘要

基于异质组织的大规模三维(3D)基因组数据来破译染色体构象的变异是理解细胞类型特异性基因组结构和动态的关键。令人惊讶的是,高通量染色体构象捕获(Hi-C)数据的计算去卷积方法在文献中仍然非常罕见。在这里,开发了一种深度卷积神经网络(CNN),用于对大规模 Hi-C 数据(deCOOC)进行去卷积,该方法在去卷积任务中的表现明显优于所有最先进的工具。有趣的是,人们注意到染色质可及性或 Hi-C 接触频率本身不足以解释 deCOOC 的强大功能,这表明存在与细胞类型特异性 3D 基因组结构相关的潜在嵌入信息层。通过将 deCOOC 应用于内脏和皮下脂肪组织中生成的内部批量 Hi-C 数据,发现两个解剖部位中 M2 细胞的特征性染色质特征与不同的生理功能明显相关。总之,deCOOC 既是一种可靠的 Hi-C 数据去卷积方法,也是一种提取 3D 基因组结构功能的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e222/10520690/263a74a2e5de/ADVS-10-2301058-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验