Suppr超能文献

九个人类器官系统生物年龄的遗传结构。

The genetic architecture of biological age in nine human organ systems.

机构信息

Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.

Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Nat Aging. 2024 Sep;4(9):1290-1307. doi: 10.1038/s43587-024-00662-8. Epub 2024 Jun 28.

Abstract

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.

摘要

研究人类衰老的遗传基础对于揭示慢性病的病因和开发可行的治疗方法至关重要。在这里,我们在 377028 名欧洲血统的 UK Biobank 参与者中,描述了跨九个人体器官系统的生物学年龄差距(BAG;机器学习预测年龄与实际年龄之间的差异)的遗传结构。BAG 是使用交叉验证支持向量机计算的,其中包含成像、身体特征和生理指标。我们确定了 393 个与大脑、眼睛、心血管、肝脏、免疫、代谢、肌肉骨骼、肺部和肾脏系统相关的基因组座-BAG 对(P<5×10)。与九个 BAG 相关的遗传变异主要是特定于相应器官系统的(器官特异性),同时与其他器官系统具有多效性联系(器官间交叉对话)。我们发现,九个 BAG 之间的遗传相关性反映了它们的表型相关性。此外,从两样本孟德尔随机化和潜在因果方差模型建立的多器官因果网络揭示了慢性疾病(例如阿尔茨海默病和糖尿病)、可改变的生活方式因素(例如睡眠时间和体重)与多个 BAG 之间的潜在因果关系。我们的研究结果表明,通过多器官网络(包括生活方式干预和药物再利用策略)改善人类器官健康具有潜力。

相似文献

1
The genetic architecture of biological age in nine human organ systems.
Nat Aging. 2024 Sep;4(9):1290-1307. doi: 10.1038/s43587-024-00662-8. Epub 2024 Jun 28.
2
The Genetic Architecture of Biological Age in Nine Human Organ Systems.
medRxiv. 2024 Jun 11:2023.06.08.23291168. doi: 10.1101/2023.06.08.23291168.
4
Genetically supported targets and drug repurposing for brain aging: A systematic study in the UK Biobank.
Sci Adv. 2025 Mar 14;11(11):eadr3757. doi: 10.1126/sciadv.adr3757. Epub 2025 Mar 12.
9
10
A data-driven approach for studying the role of body mass in multiple diseases: a phenome-wide registry-based case-control study in the UK Biobank.
Lancet Digit Health. 2019 Jul;1(3):e116-e126. doi: 10.1016/S2589-7500(19)30028-7. Epub 2019 Jun 27.

引用本文的文献

3
Towards a multi-organ, multi-omics medical digital twin.
Nat Biomed Eng. 2025 Aug 25. doi: 10.1038/s41551-025-01474-w.
4
Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart.
medRxiv. 2025 Aug 13:2025.08.09.25333350. doi: 10.1101/2025.08.09.25333350.
5
Sleep chart of biological aging clocks across organs and omics.
medRxiv. 2025 Aug 11:2025.08.08.25333313. doi: 10.1101/2025.08.08.25333313.
6
Biological heart and brain ageing in subjects with cardiovascular diseases.
Front Cardiovasc Med. 2025 Jul 7;12:1569423. doi: 10.3389/fcvm.2025.1569423. eCollection 2025.
7
Multi-organ MRI digitizes biological aging clocks across proteomics, metabolomics, and genetics.
medRxiv. 2025 Jul 11:2025.07.10.25331263. doi: 10.1101/2025.07.10.25331263.
10
Brain-heart-eye axis revealed by multi-organ imaging, genetics and proteomics.
medRxiv. 2025 Jun 9:2025.01.04.25319995. doi: 10.1101/2025.01.04.25319995.

本文引用的文献

1
Sex differences orchestrated by androgens at single-cell resolution.
Nature. 2024 May;629(8010):193-200. doi: 10.1038/s41586-024-07291-6. Epub 2024 Apr 10.
2
The genetic architecture of multimodal human brain age.
Nat Commun. 2024 Mar 23;15(1):2604. doi: 10.1038/s41467-024-46796-6.
3
Sex modulation of faces prediction error in the autistic brain.
Commun Biol. 2024 Jan 25;7(1):127. doi: 10.1038/s42003-024-05807-4.
4
Genomic loci influence patterns of structural covariance in the human brain.
Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2300842120. doi: 10.1073/pnas.2300842120. Epub 2023 Dec 21.
5
Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases.
Nat Genet. 2023 Aug;55(8):1267-1276. doi: 10.1038/s41588-023-01443-6. Epub 2023 Jul 13.
7
Mendelian randomization.
Nat Rev Methods Primers. 2022 Feb 10;2. doi: 10.1038/s43586-021-00092-5.
8
Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images.
Science. 2023 Jun 2;380(6648):abn6598. doi: 10.1126/science.abn6598.
9
Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality.
Nat Med. 2023 May;29(5):1221-1231. doi: 10.1038/s41591-023-02296-6. Epub 2023 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验