Suppr超能文献

评估转录组数据分析管道对下游功能富集结果的影响。

Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results.

机构信息

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.

Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

出版信息

Nucleic Acids Res. 2024 Aug 12;52(14):8100-8111. doi: 10.1093/nar/gkae552.

Abstract

Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.

摘要

转录组学被广泛用于评估生物系统的状态。有许多工具可用于不同的步骤,如归一化、差异表达和富集。虽然许多研究都研究了方法选择对差异表达结果的影响,但很少关注它们对进一步下游功能分析的影响,后者通常为解释和后续实验提供依据。为了解决这个问题,我们引入了 FLOP,这是一个基于 nextflow 的综合工作流程,结合了方法来对转录组学数据进行端到端分析。我们在从终末期心力衰竭患者到癌细胞系的数据集上展示了 FLOP。我们发现了在基因水平上不易察觉的影响,并且观察到不对数据进行过滤对基因集空间中管道之间的相关性有最大的影响。此外,我们进行了三个基准测试来评估 FLOP 中包含的 12 个管道,并证实过滤在预期中到低生物信号的情况下是必不可少的。总的来说,我们的结果强调了仔细评估预处理方法选择对下游富集分析的影响的重要性。我们设想 FLOP 是衡量功能分析稳健性的有价值的工具,最终将导致更可靠和更具结论性的生物学发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9658/11317128/e7fa6e519157/gkae552figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验