Suppr超能文献

一种基于二维超声图像的用于测量孕早期胎儿颅内标志物的新型人工智能模型。

A novel artificial intelligence model for measuring fetal intracranial markers during the first trimester based on two-dimensional ultrasound image.

作者信息

Sun Lingling, Yu Junxuan, Yao Jiezhi, Cao Yan, Sun Naimin, Chen Keqi, Lin Yujia, Ji Chunya, Zhang Jun, Ling Chen, Yang Zhong, Pan Qi, Yang Ronghao, Yang Xin, Ni Dong, Yin Linliang, Deng Xuedong

机构信息

Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.

出版信息

Int J Gynaecol Obstet. 2024 Dec;167(3):1090-1100. doi: 10.1002/ijgo.15762. Epub 2024 Jun 30.

Abstract

OBJECTIVE

To establish reference ranges of fetal intracranial markers during the first trimester and develop the first novel artificial intelligence (AI) model to measure key markers automatically.

METHODS

This retrospective study used two-dimensional (2D) ultrasound images from 4233 singleton normal fetuses scanned at 11-13 weeks of gestation at the Affiliated Suzhou Hospital of Nanjing Medical University from January 2018 to July 2022. We analyzed 10 key markers in three important planes of the fetal head. Based on these, reference ranges of 10 fetal intracranial markers were established and an AI model was developed for automated marker measurement. AI and manual measurements were compared to evaluate differences, correlations, consistency, and time consumption based on mean error, Pearson correlation analysis, intraclass correlation coefficients (ICCs), and average measurement time.

RESULTS

The results of AI and manual methods had strong consistency and correlation (all ICC values >0.75, all r values >0.75, and all P values <0.001). The average absolute error of both only ranged from 0.124 to 0.178 mm. AI achieved a 100% detection rate for abnormal cases. Additionally, the average measurement time of AI was only 0.49 s, which was more than 65 times faster than the manual measurement method.

CONCLUSION

The present study first established the normal standard reference ranges of fetal intracranial markers based on a large Chinese population data set. Furthermore, the proposed AI model demonstrated its capability to measure multiple fetal intracranial markers automatically, serving as a highly effective tool to streamline sonographer tasks and mitigate manual measurement errors, which can be generalized to first-trimester scanning.

摘要

目的

建立孕早期胎儿颅内标志物的参考范围,并开发首个能够自动测量关键标志物的新型人工智能(AI)模型。

方法

这项回顾性研究使用了2018年1月至2022年7月在南京医科大学附属苏州医院对4233例单胎正常胎儿在妊娠11至13周时进行扫描得到的二维(2D)超声图像。我们分析了胎儿头部三个重要平面中的10个关键标志物。在此基础上,建立了10种胎儿颅内标志物的参考范围,并开发了用于自动标志物测量的AI模型。基于平均误差、Pearson相关分析、组内相关系数(ICC)和平均测量时间,比较了AI测量和手动测量的差异、相关性、一致性和时间消耗。

结果

AI和手动测量方法的结果具有很强的一致性和相关性(所有ICC值>0.75,所有r值>0.75,所有P值<0.001)。两者的平均绝对误差仅在0.124至0.178毫米之间。AI对异常病例的检出率达到100%。此外,AI的平均测量时间仅为0.49秒,比手动测量方法快65倍以上。

结论

本研究首次基于大量中国人群数据集建立了胎儿颅内标志物的正常标准参考范围。此外,所提出的AI模型展示了其自动测量多个胎儿颅内标志物的能力,是简化超声检查任务和减少手动测量误差的高效工具,可推广应用于孕早期扫描。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验