Suppr超能文献

人工智能获取胎儿脑测量值(SonoCNS)在妊娠第二和第三 trimester 的可重复性和再现性。

Repeatability and reproducibility of artificial intelligence-acquired fetal brain measurements (SonoCNS) in the second and third trimesters of pregnancy.

机构信息

Jan Kochanowski University in Kielce, Kielce, Poland.

Provincial Combined Hospital in Kielce, Kielce, Poland.

出版信息

Sci Rep. 2024 Oct 23;14(1):25076. doi: 10.1038/s41598-024-77313-w.

Abstract

Artificial Intelligence (AI)-based algorithms are increasingly entering clinical practice, aiding in the assessment of fetal anatomy and biometry. One such tool for evaluating the fetal head and central nervous system structures is SonoCNS™, which delineates appropriate planes for measuring head circumference (HC), biparietal diameter (BPD), occipitofrontal diameter (OFD), transcerebellar diameter (TCD), width of the posterior horn of the lateral ventricle (Vp), and cisterna magna (CM) based on a 3D volume acquired at the level of the fetal head's thalamic plane. This study aimed to evaluate the intra- and interobserver variability of measurements obtained using this software. The study included 381 patients, 270 in their second trimester of pregnancy (70%) and 111 in the third trimester. Each patient underwent manual biometric measurements of the aforementioned structures and twice using the SonoCNS software. We calculated the intraobserver variability between the manual measurements and the average of the automated measurements, as well as the interobserver variability for automated measurements. We also compared the median examination time for manual and automated measurements. The interclass correlation coefficients (ICC) for interobserver and intraobserver variability for parameters BPD, HC, and OFD ranged from good to excellent reproducibility in the general population and subgroups (> 0.75). CM and Vp measurements, both in the general population and subgroups, fell into the category of moderate (0.5-0.75) and poor reproducibility (< 0.5). TCD measurements showed moderate (> 0.5) to good reproducibility (0.75-0.9), and OFD showed good and excellent reproducibility. The assessment of the biometry of fetal head structures using SonoCNS took an average of 63 s compared to 14 s for manual measurement (p < 0.001). The SonoCNS™ software is characterized by good to excellent reproducibility and repeatability in the measurement of fetal skull biometry (BPD, HC, and OFD), with poorer performance in measurements of intracranial structures (CM, Vp, TCD). Apart from biometric parameters, the software is useful in clinical practice for delineating appropriate planes from the acquired volume of the fetal head and shortening examination time.

摘要

基于人工智能(AI)的算法越来越多地应用于临床实践,辅助评估胎儿的解剖结构和生物测量指标。SonoCNS™是评估胎儿头部和中枢神经系统结构的一种工具,它可以根据在胎儿丘脑平面获得的三维体积,为头围(HC)、双顶径(BPD)、枕额径(OFD)、小脑横径(TCD)、侧脑室后角宽度(Vp)和小脑延髓池(CM)的测量划定适当的平面。本研究旨在评估该软件测量值的组内和组间变异性。该研究纳入了 381 名患者,其中 270 名处于妊娠中期(70%),111 名处于妊娠晚期。每位患者均接受了上述结构的手动生物测量,并使用 SonoCNS 软件进行了两次测量。我们计算了手动测量值与自动测量平均值之间的组内变异性,以及自动测量值的组间变异性。我们还比较了手动和自动测量的中位检查时间。在一般人群和亚组中,参数 BPD、HC 和 OFD 的组内和组间变异性的组间相关系数(ICC)为良好至极好的可重复性(>0.75)。CM 和 Vp 的测量值,无论是在一般人群还是亚组中,均为中度(0.5-0.75)和较差的可重复性(<0.5)。TCD 测量值显示出中度(>0.5)至良好的可重复性(0.75-0.9),而 OFD 则具有良好和极好的可重复性。使用 SonoCNS 评估胎儿头部结构的生物测量值平均需要 63 秒,而手动测量需要 14 秒(p<0.001)。SonoCNS™软件在测量胎儿颅骨生物测量(BPD、HC 和 OFD)方面具有良好至极好的可重复性和可再现性,在测量颅内结构(CM、Vp、TCD)方面表现较差。除了生物测量参数外,该软件还可用于临床实践,通过获得的胎儿头部体积勾勒适当的平面并缩短检查时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验