Saatchi Daniel, Oh Saewoong, Yoo Hyunjoon, Kim Ji-Seok, Lee Myung-Joon, Khan Mannan, Wicklein Bernd, Mahato Manmatha, Oh Il-Kwon
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain.
Adv Sci (Weinh). 2024 Sep;11(33):e2402872. doi: 10.1002/advs.202402872. Epub 2024 Jul 1.
In an era marked by increasing environmental challenges affecting human well-being, traditional acoustic materials struggle to effectively handle the diverse and multi-frequency nature of harmful environmental noises. This has spurred a demand for innovative acoustic metamaterial solutions by utilizing sustainable design strategies. This research introduces tunable Schwarz metamaterial capable of transforming into a soft meta-foam to solve the complex problems of varying environmental noises. This study primarily focuses on adjusting single to multiple sound-blocking bandgaps mechanism using a multi-layered approach, incorporating the Schwarz P-type triply periodic minimal surface (TPMS) and its elective soft foam counterpart, known as tunable Schwarz meta-foams (TSMF-x). The tunable design parameters of the unit cell, multi-layered TPMS, and soft programmable TSMF-lichen version are comprehensively explored including a fire-safety test. The results demonstrate these enhanced flame retardant meta-foam families have the potential to be used for mid-to-high-frequency environmental noises in industrial equipment and smart homes for sustainable architecture and environmental health applications.
在一个环境挑战日益影响人类福祉的时代,传统声学材料难以有效应对有害环境噪声的多样性和多频特性。这激发了通过采用可持续设计策略来寻求创新声学超材料解决方案的需求。本研究引入了一种可调谐的施瓦茨超材料,它能够转变为软质超泡沫,以解决各种环境噪声的复杂问题。本研究主要聚焦于采用多层方法调整单至多个隔音带隙机制,该方法结合了施瓦茨P型三重周期极小曲面(TPMS)及其选择性的软质泡沫对应物,即可调谐施瓦茨超泡沫(TSMF-x)。对晶胞、多层TPMS和软质可编程TSMF-地衣版本的可调设计参数进行了全面探索,包括防火安全测试。结果表明,这些增强型阻燃超泡沫系列有潜力用于工业设备和智能家居中的中高频环境噪声,以实现可持续建筑和环境健康应用。