肿瘤靶向光热治疗增强放射疗法突破缺氧限制。
Breakthrough of Hypoxia Limitation by Tumor-Targeting Photothermal Therapy-Enhanced Radiation Therapy.
机构信息
Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
出版信息
Int J Nanomedicine. 2024 Jun 26;19:6499-6513. doi: 10.2147/IJN.S450124. eCollection 2024.
PURPOSE
To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers.
MATERIALS AND METHODS
In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria. The effect of the photothermal therapy-enhanced radiation therapy was also examined to assess the alleviation of hypoxia and the enhancement of radiation sensitivity.
RESULTS
The PIBD nanoparticles exhibited strong capacity in mitochondrial targeting and selective tumor accumulation. Upon activation by 808 nm laser irradiation, the nanoparticles effectively alleviated local hypoxia by photothermal effect enhanced blood supplying to improve oxygen content, thereby enhancing the ROS production for effective RT. Comparative studies revealed that PIBD-induced RT significantly outperformed conventional RT in treating hypoxic tumors.
CONCLUSION
This design of tumor-targeting photothermal therapy-enhanced radiation therapy nanomedicine would advance the development of targeted drug delivery system for effective RT regardless of hypoxic microenvironment.
目的
解决放射治疗(RT)中由于肿瘤缺氧加剧和辐射增敏剂分布不均导致的活性氧(ROS)产生不理想的问题。
材料和方法
在这项工作中,设计了一种新型纳米药物,命名为 PLGA@IR780-Bi-DTPA(PIBD),通过将辐射增敏剂 Bi-DTPA 和光热剂 IR780 装载到聚乳酸-共-羟基乙酸(PLGA)上。该设计利用了 IR780 的肿瘤靶向能力,确保纳米颗粒在肿瘤细胞中选择性积累,特别是在线粒体中。还研究了光热治疗增强放射治疗的效果,以评估其对缓解缺氧和增强放射敏感性的作用。
结果
PIBD 纳米颗粒具有很强的线粒体靶向和选择性肿瘤积累能力。在 808nm 激光照射下激活后,纳米颗粒通过光热效应有效缓解局部缺氧,增加血液供应以提高氧含量,从而增强 ROS 的产生,实现有效的 RT。对比研究表明,PIBD 诱导的 RT 在治疗缺氧肿瘤方面明显优于传统 RT。
结论
这种肿瘤靶向光热治疗增强放射治疗纳米医学的设计将推进针对有效 RT 的靶向药物输送系统的发展,而不受缺氧微环境的影响。
相似文献
J Nanobiotechnology. 2021-12-20
引用本文的文献
本文引用的文献
Biochem Biophys Res Commun. 2023-9-3
J Nanobiotechnology. 2021-12-20
ACS Biomater Sci Eng. 2019-4-8
Nat Biotechnol. 2021-3