State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu, 241001, China.
Biomaterials. 2025 Feb;313:122771. doi: 10.1016/j.biomaterials.2024.122771. Epub 2024 Aug 25.
The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.
恶性肿瘤微环境(TME)在光疗过程中通常会变得更加恶化,从而阻碍了抗肿瘤疗效。为了解决这个问题,我们在此报告了改良和自适应纳米颗粒(TPASIC-PFH@PLGA NPs),它可以同时逆转缺氧 TME,并将光活性从光热主导状态切换为光动力主导状态,以最大限度地提高光疗效果。TPASIC-PFH@PLGA NPs 通过将富含氧的液体全氟己烷(PFH)掺入颗粒内微环境中设计而成,以调节聚集诱导发光(AIE)光敏剂 TPASIC 的分子内运动。TPASIC 表现出独特的聚集增强活性氧(ROS)生成特征。PFH 的掺入赋予了 TPASIC 最初的分散状态,从而促进了活跃的分子内运动和光热转换效率。而 PFH 的挥发会导致纳米颗粒塌陷,并形成紧密的 TPASIC 聚集体,从而大大提高 ROS 的生成效率。因此,PFH 的掺入不仅目前促进了 TPASIC 的光热和光动力效率,并增加了肿瘤内的氧气水平,而且还实现了智能光热到光动力的切换,以最大限度地提高光疗性能。PFH 和 AIE 光敏剂的整合最终提供了比具有固定光热和光动力效率的传统光疗剂更优异的抗肿瘤效果。这项研究提出了一种新的纳米工程策略,以改善 TME,并调整治疗方式以适应变化的 TME,用于先进的抗肿瘤应用。