Suppr超能文献

一种使用超维计算的二值化图像编码框架。

An encoding framework for binarized images using hyperdimensional computing.

作者信息

Smets Laura, Van Leekwijck Werner, Tsang Ing Jyh, Latré Steven

机构信息

IDLab, Department of Computer Science, University of Antwerp-imec, Antwerp, Belgium.

出版信息

Front Big Data. 2024 Jun 14;7:1371518. doi: 10.3389/fdata.2024.1371518. eCollection 2024.

Abstract

INTRODUCTION

Hyperdimensional Computing (HDC) is a brain-inspired and lightweight machine learning method. It has received significant attention in the literature as a candidate to be applied in the wearable Internet of Things, near-sensor artificial intelligence applications, and on-device processing. HDC is computationally less complex than traditional deep learning algorithms and typically achieves moderate to good classification performance. A key aspect that determines the performance of HDC is encoding the input data to the hyperdimensional (HD) space.

METHODS

This article proposes a novel lightweight approach relying only on native HD arithmetic vector operations to encode binarized images that preserves the similarity of patterns at nearby locations by using point of interest selection and .

RESULTS

The method reaches an accuracy of 97.92% on the test set for the MNIST data set and 84.62% for the Fashion-MNIST data set.

DISCUSSION

These results outperform other studies using native HDC with different encoding approaches and are on par with more complex hybrid HDC models and lightweight binarized neural networks. The proposed encoding approach also demonstrates higher robustness to noise and blur compared to the baseline encoding.

摘要

引言

超维计算(HDC)是一种受大脑启发的轻量级机器学习方法。作为一种有望应用于可穿戴物联网、近传感器人工智能应用和设备上处理的技术,它在文献中受到了广泛关注。HDC的计算复杂度低于传统深度学习算法,通常能实现中等至良好的分类性能。决定HDC性能的一个关键因素是将输入数据编码到超维(HD)空间。

方法

本文提出了一种新颖的轻量级方法,仅依靠原生HD算术向量运算对二值化图像进行编码,通过使用兴趣点选择来保留附近位置模式的相似性。

结果

该方法在MNIST数据集的测试集上准确率达到97.92%,在Fashion-MNIST数据集上为84.62%。

讨论

这些结果优于其他使用不同编码方法的原生HDC研究,与更复杂的混合HDC模型和轻量级二值化神经网络相当。与基线编码相比,所提出的编码方法对噪声和模糊也具有更高的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea81/11214273/52378e2925f6/fdata-07-1371518-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验