Suppr超能文献

评估心脏病发作风险:重金属混合物的贝叶斯核机器回归分析

Assessing the Risk of Heart Attack: A Bayesian Kernel Machine Regression Analysis of Heavy Metal Mixtures.

作者信息

Ibrahimou Boubakari, Hasan Kazi Tanvir, Burchfield Shelbie, Salihu Hamisu, Zhu Yiliang, Dagne Getachew, De La Rosa Mario, Melesse Assefa, Lucchini Roberto, Bursac Zoran

机构信息

Florida International University, Robert Stempel College of Public Health & Social Work, Department of Biostatistics.

Baylor College of Medicine, Center of Excellence in Health Equity, Training and Research.

出版信息

Res Sq. 2024 Jun 18:rs.3.rs-4456611. doi: 10.21203/rs.3.rs-4456611/v1.

Abstract

BACKGROUND

The assessment of heavy metals' effects on human health is frequently limited to investigating one metal or a group of related metals. The effect of heavy metals mixture on heart attack is unknown.

METHODS

This study applied the Bayesian kernel machine regression model (BKMR) to the 2011-2016 National Health and Nutrition Examination Survey (NHANES) data to investigate the association between heavy metal mixture exposure with heart attack. 2972 participants over the age of 20 were included in the study.

RESULTS

Results indicate that heart attack patients have higher levels of cadmium and lead in the blood and cadmium, cobalt, and tin in the urine, while having lower levels of mercury, manganese, and selenium in the blood and manganese, barium, tungsten, and strontium in the urine. The estimated risk of heart attack showed a negative association of 0.0030 units when all the metals were at their 25 percentile compared to their 50 percentile and a positive association of 0.0285 units when all the metals were at their 75 percentile compared to their 50 percentile. The results suggest that heavy metal exposure, especially cadmium and lead, may increase the risk of heart attacks.

CONCLUSIONS

This study suggests a possible association between heavy metal mixture exposure and heart attack and, additionally, demonstrates how the BKMR model can be used to investigate new combinations of exposures in future studies.

摘要

背景

对重金属对人类健康影响的评估通常局限于研究一种金属或一组相关金属。重金属混合物对心脏病发作的影响尚不清楚。

方法

本研究将贝叶斯核机器回归模型(BKMR)应用于2011 - 2016年国家健康与营养检查调查(NHANES)数据,以研究重金属混合物暴露与心脏病发作之间的关联。该研究纳入了2972名20岁以上的参与者。

结果

结果表明,心脏病发作患者血液中的镉和铅以及尿液中的镉、钴和锡含量较高,而血液中的汞、锰和硒以及尿液中的锰、钡、钨和锶含量较低。与所有金属处于第50百分位数相比,当所有金属处于第25百分位数时,心脏病发作的估计风险显示出0.0030单位的负相关;当所有金属处于第75百分位数时,与第50百分位数相比,估计风险显示出0.0285单位的正相关。结果表明,重金属暴露,尤其是镉和铅,可能会增加心脏病发作的风险。

结论

本研究表明重金属混合物暴露与心脏病发作之间可能存在关联,此外,还展示了BKMR模型在未来研究中如何用于研究新的暴露组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec86/11213216/9f9c3a3b95a0/nihpp-rs4456611v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验