Suppr超能文献

用于预测充血性心力衰竭加重、慢性阻塞性肺疾病加重和糖尿病酮症酸中毒住院患者费用的机器学习算法的开发与优化

Development and Optimization of Machine Learning Algorithms for Predicting In-hospital Patient Charges for Congestive Heart Failure Exacerbations, Chronic Obstructive Pulmonary Disease Exacerbations and Diabetic Ketoacidosis.

作者信息

Arnold Monique, Liou Lathan, Boland Mary Regina

机构信息

The Mount Sinai Hospital at the Icahn School of Medicine.

Icahn School of Medicine.

出版信息

Res Sq. 2024 Jun 13:rs.3.rs-4490027. doi: 10.21203/rs.3.rs-4490027/v1.

Abstract

BACKGROUND

Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models.

RESULTS

We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We used numerous ML techniques to predict in-hospital total cost. We found that linear regression (LM), gradient boosting (GBM) and extreme gradient boosting (XGB) models had good predictive performance and were statistically equivalent, with training R-square values ranging from 0.49-0.95 for CHF, 0.56-0.95 for COPD, and 0.32-0.99 for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures. and elective/nonelective admission.

CONCLUSIONS

ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.

摘要

背景

在美国,因充血性心力衰竭(CHF)、慢性阻塞性肺疾病(COPD)和糖尿病酮症酸中毒(DKA)急性加重而住院的费用高昂。本研究的目的是使用机器学习(ML)模型预测每种疾病的住院费用。

结果

我们对2016年1月1日至2019年12月31日期间住院成年患者的全国出院记录进行了一项回顾性队列研究。我们使用了多种ML技术来预测住院总费用。我们发现线性回归(LM)、梯度提升(GBM)和极端梯度提升(XGB)模型具有良好的预测性能,且在统计学上相当,CHF的训练R平方值范围为0.49 - 0.95,COPD为0.56 - 0.95,DKA为0.32 - 0.99。我们确定了推动费用的重要关键特征,包括患者年龄、住院时间、手术数量以及择期/非择期入院情况。

结论

ML方法可用于准确预测COPD急性加重、CHF急性加重和DKA的费用,并识别高费用的驱动因素。总体而言,我们的研究结果可能为未来旨在降低这些疾病潜在高患者费用的研究提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d9/11213225/f8ffec3abcae/nihpp-rs4490027v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验