Arnold Monique, Liou Lathan, Boland Mary Regina
Department of Emergency Medicine, The Mount Sinai Hospital at the Icahn School of Medicine, 306 E 96th Street, #4A, New York, NY, 10128, USA.
Icahn School of Medicine at Mount Sinai Hospital, New York City, NY, USA.
BioData Min. 2024 Sep 12;17(1):35. doi: 10.1186/s13040-024-00387-9.
Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models.
We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We constructed six ML models (linear regression, ridge regression, support vector machine, random forest, gradient boosting and extreme gradient boosting) to predict total in-hospital cost for admission for each condition. Our models had good predictive performance, with testing R-squared values of 0.701-0.750 (mean of 0.713) for CHF; 0.694-0.724 (mean 0.709) for COPD; and 0.615-0.729 (mean 0.694) for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures, and elective/nonelective admission.
ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.
在美国,因充血性心力衰竭(CHF)、慢性阻塞性肺疾病(COPD)和糖尿病酮症酸中毒(DKA)急性加重而住院的费用很高。本研究的目的是使用机器学习(ML)模型预测每种疾病的住院费用。
我们对2016年1月1日至2019年12月31日期间住院成年患者的全国出院记录进行了一项回顾性队列研究。我们构建了六个ML模型(线性回归、岭回归、支持向量机、随机森林、梯度提升和极端梯度提升)来预测每种疾病入院的总住院费用。我们的模型具有良好的预测性能,CHF的测试决定系数(R平方)值为0.701 - 0.750(平均值为0.713);COPD为0.694 - 0.724(平均值0.709);DKA为0.615 - 0.729(平均值0.694)。我们确定了推动费用的重要关键特征,包括患者年龄、住院时间、手术数量以及择期/非择期入院情况。
ML方法可用于准确预测COPD急性加重、CHF急性加重和DKA的费用,并识别高费用的驱动因素。总体而言,我们的研究结果可能为未来旨在降低这些疾病潜在高患者费用的研究提供参考。