Chen Zhe, Jia Guanglu, Zhou Qijie, Zhang Yulai, Quan Zhenzhen, Chen Xuechao, Fukuda Toshio, Huang Qiang, Shi Qing
School of Medical Technology, Beijing Institute of Technology, Beijing, China.
Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing, China.
iScience. 2024 May 18;27(6):109998. doi: 10.1016/j.isci.2024.109998. eCollection 2024 Jun 21.
Deciphering how different behaviors and ultrasonic vocalizations (USVs) of rats interact can yield insights into the neural basis of social interaction. However, the behavior-vocalization interplay of rats remains elusive because of the challenges of relating the two communication media in complex social contexts. Here, we propose a machine learning-based analysis system (ARBUR) that can cluster without bias both non-step (continuous) and step USVs, hierarchically detect eight types of behavior of two freely behaving rats with high accuracy, and locate the vocal rat in 3-D space. ARBUR reveals that rats communicate via distinct USVs during different behaviors. Moreover, we show that ARBUR can indicate findings that are long neglected by former manual analysis, especially regarding the non-continuous USVs during easy-to-confuse social behaviors. This work could help mechanistically understand the behavior-vocalization interplay of rats and highlights the potential of machine learning algorithms in automatic animal behavioral and acoustic analysis.
解读大鼠不同行为与超声波发声(USV)之间的相互作用方式,有助于深入了解社会互动的神经基础。然而,由于在复杂社会环境中将这两种交流媒介联系起来存在挑战,大鼠的行为 - 发声相互作用仍不为人所知。在此,我们提出一种基于机器学习的分析系统(ARBUR),它可以无偏差地对非步进(连续)和步进USV进行聚类,高精度地分层检测两只自由活动大鼠的八种行为类型,并在三维空间中定位发声大鼠。ARBUR揭示,大鼠在不同行为期间通过不同的USV进行交流。此外,我们表明ARBUR能够揭示以前人工分析长期忽略的发现,特别是关于容易混淆的社会行为期间的非连续USV。这项工作有助于从机制上理解大鼠的行为 - 发声相互作用,并突出了机器学习算法在自动动物行为和声学分析中的潜力。