Suppr超能文献

基于深度学习对复杂环境中相互作用的灵长类动物和小鼠进行识别、跟踪、姿态估计及行为分类。

Deep-learning based identification, tracking, pose estimation, and behavior classification of interacting primates and mice in complex environments.

作者信息

Marks Markus, Qiuhan Jin, Sturman Oliver, von Ziegler Lukas, Kollmorgen Sepp, von der Behrens Wolfger, Mante Valerio, Bohacek Johannes, Yanik Mehmet Fatih

机构信息

Institute of Neuroinformatics ETH Zürich and University of Zürich, Switzerland.

Neuroscience Center Zurich, ETH Zürich and University of Zürich, Switzerland.

出版信息

Nat Mach Intell. 2022 Apr;4(4):331-340. doi: 10.1038/s42256-022-00477-5. Epub 2022 Apr 21.

Abstract

The quantification of behaviors of interest from video data is commonly used to study brain function, the effects of pharmacological interventions, and genetic alterations. Existing approaches lack the capability to analyze the behavior of groups of animals in complex environments. We present a novel deep learning architecture for classifying individual and social animal behavior, even in complex environments directly from raw video frames, while requiring no intervention after initial human supervision. Our behavioral classifier is embedded in a pipeline (SIPEC) that performs segmentation, identification, pose-estimation, and classification of complex behavior, outperforming the state of the art. SIPEC successfully recognizes multiple behaviors of freely moving individual mice as well as socially interacting non-human primates in 3D, using data only from simple mono-vision cameras in home-cage setups.

摘要

从视频数据中对感兴趣的行为进行量化,常用于研究脑功能、药物干预效果和基因改变。现有方法缺乏分析复杂环境中动物群体行为的能力。我们提出了一种新颖的深度学习架构,用于对个体和社会动物行为进行分类,即使在直接从原始视频帧获取的复杂环境中,且在初始人工监督之后无需干预。我们的行为分类器嵌入在一个管道(SIPEC)中,该管道执行复杂行为的分割、识别、姿态估计和分类,性能优于现有技术。SIPEC仅使用来自笼内设置的简单单目视觉相机的数据,就能成功识别自由移动的单个小鼠以及进行社会互动的非人类灵长类动物的多种三维行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de4b/7612650/1268720e731e/EMS143931-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验