Okui Nobuo
Dentistry, Kanagawa Dental University, Kanagawa, JPN.
Cureus. 2024 May 29;16(5):e61315. doi: 10.7759/cureus.61315. eCollection 2024 May.
In this study, we propose a method for navigating the choice of treatment for stress urinary incontinence (SUI) and urgency urinary incontinence (UUI) using graph theory in discrete mathematics. Our previous study accumulated data from 150 patients who underwent tension-free vaginal tape (TVT), transobturator tape (TOT), and vaginal non-ablation Erbium YAG laser (VEL) surgeries between 2014 and 2016. Network diagrams were created using this data. The treatments TVT, TOT, and VEL, along with patient characteristics (1-hour pad test: 1-hrPadTest, Overactive Bladder Symptom Score: OABSS), were represented as nodes and edges in the network diagram. We then employed a heuristic function to select the optimal treatment method for the patients with SUI and UUI. This process enables medical professionals to easily navigate the data for patients with both SUI and UUI concerns by calculating the shortest path connecting the 1-hrPadTest and OABSS. These results, which are consistent with those of previous studies, suggest that VEL is the optimal treatment. Unlike previous studies that employed statistical knowledge that is challenging for patients to understand, our study aids patients in visually comprehending and developing a customized treatment plan. This approach introduces a novel perspective for clinical decision-making in the treatment of urinary incontinence. To the best of our knowledge, this is the first study to apply discrete mathematics to patient decision-making for urinary incontinence treatment.
在本研究中,我们提出了一种利用离散数学中的图论来指导压力性尿失禁(SUI)和急迫性尿失禁(UUI)治疗方案选择的方法。我们之前的研究收集了2014年至2016年间150例接受无张力阴道吊带术(TVT)、经闭孔吊带术(TOT)和阴道非消融铒激光(VEL)手术患者的数据。利用这些数据创建了网络图。在网络图中,治疗方法TVT、TOT和VEL以及患者特征(1小时尿垫试验:1-hrPadTest,膀胱过度活动症症状评分:OABSS)被表示为节点和边。然后,我们采用启发式函数为SUI和UUI患者选择最佳治疗方法。通过计算连接1-hrPadTest和OABSS的最短路径,这个过程使医疗专业人员能够轻松地浏览同时患有SUI和UUI的患者的数据。这些结果与之前的研究一致,表明VEL是最佳治疗方法。与以往使用患者难以理解的统计知识的研究不同,我们的研究帮助患者直观地理解并制定个性化的治疗方案。这种方法为尿失禁治疗的临床决策引入了新的视角。据我们所知,这是第一项将离散数学应用于尿失禁治疗患者决策的研究。