Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
Phys Rev E. 2022 Jul;106(1-2):015302. doi: 10.1103/PhysRevE.106.015302.
Simulations of protein folding and protein association happen on timescales that are orders of magnitude larger than what can typically be covered in all-atom molecular dynamics simulations. Use of low-resolution models alleviates this problem but may reduce the accuracy of the simulations. We introduce a replica-exchange-based multiscale sampling technique that combines the faster sampling in coarse-grained simulations with the potentially higher accuracy of all-atom simulations. After testing the efficiency of our Resolution Exchange with Tunneling (ResET) in simulations of the Trp-cage protein, an often used model to evaluate sampling techniques in protein simulations, we use our approach to compare the landscape of wild-type and A2T mutant Aβ_{1-42} peptides. Our results suggest a mechanism by that the mutation of a small hydrophobic alanine (A) into a bulky polar threonine (T) may interfere with the self-assembly of Aβ fibrils.
蛋白质折叠和蛋白质聚集的模拟发生在时间尺度上,远远超过全原子分子动力学模拟通常能够涵盖的范围。使用低分辨率模型可以缓解这个问题,但可能会降低模拟的准确性。我们引入了一种基于副本交换的多尺度采样技术,该技术将粗粒化模拟中的更快采样与全原子模拟中潜在更高的准确性相结合。在测试了我们的 Trp-cage 蛋白(一种常用于评估蛋白质模拟中采样技术的模型)中的分辨率交换与隧穿(ResET)的效率后,我们使用我们的方法比较了野生型和 A2T 突变 Aβ1-42 肽的景观。我们的结果表明,一个小的疏水性丙氨酸(A)突变为一个庞大的极性苏氨酸(T)可能会干扰 Aβ 原纤维的自组装。