Zhou Jie, Jie Biao, Wang Zhengdong, Zhang Zhixiang, Du Tongchun, Bian Weixin, Yang Yang, Jia Jun
IEEE Trans Med Imaging. 2024 Dec;43(12):4319-4330. doi: 10.1109/TMI.2024.3421360. Epub 2024 Dec 2.
Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). Advanced machine learning techniques, such as convolutional neural networks (CNNs), have been used to learn high-level feature representations of FCNs for automated brain disease classification. Even though convolution operations in CNNs are good at extracting local properties of FCNs, they generally cannot well capture global temporal representations of FCNs. Recently, the transformer technique has demonstrated remarkable performance in various tasks, which is attributed to its effective self-attention mechanism in capturing the global temporal feature representations. However, it cannot effectively model the local network characteristics of FCNs. To this end, in this paper, we propose a novel network structure for Local sequential feature Coupling Global representation learning (LCGNet) to take advantage of convolutional operations and self-attention mechanisms for enhanced FCN representation learning. Specifically, we first build a dynamic FCN for each subject using an overlapped sliding window approach. We then construct three sequential components (i.e., edge-to-vertex layer, vertex-to-network layer, and network-to-temporality layer) with a dual backbone branch of CNN and transformer to extract and couple from local to global topological information of brain networks. Experimental results on two real datasets (i.e., ADNI and ADHD-200) with rs-fMRI data show the superiority of our LCGNet.
对源自静息态功能磁共振成像(rs-fMRI)的功能连接网络(FCNs)进行分析,极大地推动了我们对包括阿尔茨海默病(AD)和注意力缺陷多动障碍(ADHD)在内的脑部疾病的理解。先进的机器学习技术,如卷积神经网络(CNNs),已被用于学习FCNs的高级特征表示,以实现脑部疾病的自动分类。尽管CNNs中的卷积操作擅长提取FCNs的局部属性,但它们通常无法很好地捕捉FCNs的全局时间表示。最近,Transformer技术在各种任务中表现出卓越性能,这归因于其在捕捉全局时间特征表示方面有效的自注意力机制。然而,它无法有效地对FCNs的局部网络特征进行建模。为此,在本文中,我们提出了一种用于局部序列特征耦合全局表示学习(LCGNet)的新型网络结构,以利用卷积操作和自注意力机制来增强FCN表示学习。具体而言,我们首先使用重叠滑动窗口方法为每个受试者构建一个动态FCN。然后,我们构建三个序列组件(即边到顶点层、顶点到网络层和网络到时间层),采用CNN和Transformer的双主干分支,从局部到全局提取并耦合脑网络的拓扑信息。在两个包含rs-fMRI数据的真实数据集(即ADNI和ADHD-200)上的实验结果表明了我们的LCGNet的优越性。