文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

解缠表征学习

Disentangled Representation Learning.

作者信息

Wang Xin, Chen Hong, Tang Si'ao, Wu Zihao, Zhu Wenwu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9677-9696. doi: 10.1109/TPAMI.2024.3420937. Epub 2024 Nov 6.


DOI:10.1109/TPAMI.2024.3420937
PMID:38949944
Abstract

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, and data mining. In this article, we comprehensively investigate DRL from various aspects including motivations, definitions, methodologies, evaluations, applications, and model designs. We first present two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition for disentangled representation learning. We further categorize the methodologies for DRL into four groups from the following perspectives, the model type, representation structure, supervision signal, and independence assumption. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

摘要

解缠表征学习(DRL)旨在学习一种模型,该模型能够以表征形式识别并解开隐藏在可观测数据中的潜在因素。将潜在变化因素分离为具有语义意义的变量的过程,有助于学习数据的可解释表征,这模仿了人类观察物体或关系时的有意义理解过程。作为一种通用的学习策略,DRL已在诸如计算机视觉、自然语言处理和数据挖掘等广泛场景中,展现出其在提高模型可解释性、可控性、鲁棒性以及泛化能力方面的强大作用。在本文中,我们从动机、定义、方法、评估、应用和模型设计等各个方面对DRL进行了全面研究。我们首先给出了两个公认的定义,即解缠表征学习的直观定义和群论定义。我们进一步从模型类型、表征结构、监督信号和独立性假设等角度,将DRL的方法分为四类。我们还分析了设计不同DRL模型的原则,这些原则可能在实际应用中对不同任务有益。最后,我们指出了DRL中的挑战以及值得未来研究的潜在方向。我们相信这项工作可能为推动该领域的DRL研究提供见解。

相似文献

[1]
Disentangled Representation Learning.

IEEE Trans Pattern Anal Mach Intell. 2024-12

[2]
A Survey on Curriculum Learning.

IEEE Trans Pattern Anal Mach Intell. 2022-9

[3]
Learning disentangled representations in the imaging domain.

Med Image Anal. 2022-8

[4]
Learning explainable task-relevant state representation for model-free deep reinforcement learning.

Neural Netw. 2024-12

[5]
ConcVAE: Conceptual Representation Learning.

IEEE Trans Neural Netw Learn Syst. 2025-4

[6]
Performance of a Computational Model of the Mammalian Olfactory System

2013

[7]
Interpretable thoracic pathologic prediction via learning group-disentangled representation.

Methods. 2023-10

[8]
DRAVA: Aligning Human Concepts with Machine Learning Latent Dimensions for the Visual Exploration of Small Multiples.

Proc SIGCHI Conf Hum Factor Comput Syst. 2023-4

[9]
Deep Reinforcement Learning: A Survey.

IEEE Trans Neural Netw Learn Syst. 2024-4

[10]
Disentangled representation for sequential treatment effect estimation.

Comput Methods Programs Biomed. 2022-11

引用本文的文献

[1]
Generative artificial intelligence based models optimization towards molecule design enhancement.

J Cheminform. 2025-8-4

[2]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[3]
Neurocognitive Latent Space Regularization for Multi-Label Diagnosis from MRI.

Predict Intell Med. 2025

[4]
Advances in neural architecture search.

Natl Sci Rev. 2024-8-23

[5]
Deep learning for the harmonization of structural MRI scans: a survey.

Biomed Eng Online. 2024-8-31

[6]
Learning control-ready forecasters for Blood Glucose Management.

Comput Biol Med. 2024-9

[7]
Incremental Learning of Goal-Directed Actions in a Dynamic Environment by a Robot Using Active Inference.

Entropy (Basel). 2023-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索