Wang Xin, Zhu Wenwu
Department of Computer Science and Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
Natl Sci Rev. 2024 Aug 23;11(8):nwae282. doi: 10.1093/nsr/nwae282. eCollection 2024 Aug.
Automated machine learning (AutoML) has achieved remarkable success in automating the non-trivial process of designing machine learning models. Among the focal areas of AutoML, neural architecture search (NAS) stands out, aiming to systematically explore the complex architecture space to discover the optimal neural architecture configurations without intensive manual interventions. NAS has demonstrated its capability of dramatic performance improvement across a large number of real-world tasks. The core components in NAS methodologies normally include (i) defining the appropriate search space, (ii) designing the right search strategy and (iii) developing the effective evaluation mechanism. Although early NAS endeavors are characterized via groundbreaking architecture designs, the imposed exorbitant computational demands prompt a shift towards more efficient paradigms such as weight sharing and evaluation estimation, etc. Concurrently, the introduction of specialized benchmarks has paved the way for standardized comparisons of NAS techniques. Notably, the adaptability of NAS is evidenced by its capability of extending to diverse datasets, including graphs, tabular data and videos, etc., each of which requires a tailored configuration. This paper delves into the multifaceted aspects of NAS, elaborating on its recent advances, applications, tools, benchmarks and prospective research directions.
自动化机器学习(AutoML)在自动化设计机器学习模型这一重要过程中取得了显著成功。在AutoML的重点领域中,神经架构搜索(NAS)脱颖而出,旨在系统地探索复杂的架构空间,以发现最优的神经架构配置,而无需大量人工干预。NAS已在大量实际任务中展现出其显著提升性能的能力。NAS方法中的核心组件通常包括:(i)定义合适的搜索空间;(ii)设计正确的搜索策略;(iii)开发有效的评估机制。尽管早期的NAS工作以开创性的架构设计为特征,但所带来的过高计算需求促使人们转向更高效的范式,如权重共享和评估估计等。同时,专门基准测试的引入为NAS技术的标准化比较铺平了道路。值得注意的是,NAS能够扩展到包括图形、表格数据和视频等在内的各种数据集,这证明了其适应性,其中每种数据集都需要量身定制的配置。本文深入探讨了NAS的多方面内容,阐述了其最新进展、应用、工具、基准测试和未来研究方向。