Suppr超能文献

机器学习衍生颅内压预测的概率密度和信息熵。

Probability density and information entropy of machine learning derived intracranial pressure predictions.

机构信息

Department of Ophthalmology, Counties Manukau District Health Board, Auckland, New Zealand.

Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.

出版信息

PLoS One. 2024 Jul 1;19(7):e0306028. doi: 10.1371/journal.pone.0306028. eCollection 2024.

Abstract

Even with the powerful statistical parameters derived from the Extreme Gradient Boost (XGB) algorithm, it would be advantageous to define the predicted accuracy to the level of a specific case, particularly when the model output is used to guide clinical decision-making. The probability density function (PDF) of the derived intracranial pressure predictions enables the computation of a definite integral around a point estimate, representing the event's probability within a range of values. Seven hold-out test cases used for the external validation of an XGB model underwent retinal vascular pulse and intracranial pressure measurement using modified photoplethysmography and lumbar puncture, respectively. The definite integral ±1 cm water from the median (DIICP) demonstrated a negative and highly significant correlation (-0.5213±0.17, p< 0.004) with the absolute difference between the measured and predicted median intracranial pressure (DiffICPmd). The concordance between the arterial and venous probability density functions was estimated using the two-sample Kolmogorov-Smirnov statistic, extending the distribution agreement across all data points. This parameter showed a statistically significant and positive correlation (0.4942±0.18, p< 0.001) with DiffICPmd. Two cautionary subset cases (Case 8 and Case 9), where disagreement was observed between measured and predicted intracranial pressure, were compared to the seven hold-out test cases. Arterial predictions from both cautionary subset cases converged on a uniform distribution in contrast to all other cases where distributions converged on either log-normal or closely related skewed distributions (gamma, logistic, beta). The mean±standard error of the arterial DIICP from cases 8 and 9 (3.83±0.56%) was lower compared to that of the hold-out test cases (14.14±1.07%) the between group difference was statistically significant (p<0.03). Although the sample size in this analysis was limited, these results support a dual and complementary analysis approach from independently derived retinal arterial and venous non-invasive intracranial pressure predictions. Results suggest that plotting the PDF and calculating the lower order moments, arterial DIICP, and the two sample Kolmogorov-Smirnov statistic may provide individualized predictive accuracy parameters.

摘要

即使使用从 Extreme Gradient Boost (XGB) 算法中得出的强大统计参数,将预测精度定义为特定案例的水平也会很有优势,特别是当模型输出用于指导临床决策时。导出的颅内压预测的概率密度函数 (PDF) 可计算围绕点估计的定积分,代表在值范围内的事件概率。使用改良光体积描记法和腰椎穿刺,对 XGB 模型的七个外部验证保留测试案例分别进行视网膜血管脉搏和颅内压测量。从中位数 (DIICP) 到 1 cm 水的定积分 (DIICP) 与实测和预测中位数颅内压之间的绝对差值 (DiffICPmd) 呈负相关且具有高度显著性 (-0.5213±0.17,p<0.004)。使用双样本 Kolmogorov-Smirnov 统计量估计动脉和静脉概率密度函数之间的一致性,从而在所有数据点上扩展分布一致性。该参数与 DiffICPmd 呈统计学显著正相关 (0.4942±0.18,p<0.001)。两个需要注意的子案例(案例 8 和案例 9)中,观察到实测颅内压与预测颅内压之间存在差异,将其与七个保留测试案例进行比较。与所有其他分布集中在对数正态分布或密切相关的偏态分布(伽马分布、逻辑分布、贝塔分布)的案例相比,来自这两个需要注意的子案例的动脉预测都收敛到均匀分布。与保留测试案例相比(14.14±1.07%),案例 8 和 9 的动脉 DIICP 的平均值±标准误差(3.83±0.56%)较低,组间差异具有统计学意义(p<0.03)。尽管本分析中的样本量有限,但这些结果支持从独立得出的视网膜动脉和静脉无创颅内压预测中进行双重和互补分析方法。结果表明,绘制 PDF 并计算较低阶矩、动脉 DIICP 和两个样本 Kolmogorov-Smirnov 统计量可能提供个体预测准确性参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3241/11216561/bc76516d190c/pone.0306028.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验