Department of Ophthalmology, Counties Manukau District Health Board, Auckland, New Zealand.
Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia.
PLoS One. 2022 Jun 28;17(6):e0270557. doi: 10.1371/journal.pone.0270557. eCollection 2022.
To compare the retinal vascular pulsatile characteristics in subjects with normal (ICPn) and high (ICPh) intracranial pressure and quantify the interactions between intraocular pressure, intracranial pressure, and retinal vascular pulse amplitude in the Fourier domain.
Twenty-one subjects were examined using modified photoplethysmography with simultaneous ophthalmodynamometry. A harmonic regression model was fitted to each pixel in the time-series, and used to quantify the retinal vascular pulse wave parameters including the harmonic regression wave amplitude (HRWa). The pulse wave attenuation was measured under different ranges of induced intraocular pressure (IOPi), as a function of distance along the vessel (VDist). Intracranial pressure (ICP) was measured using lumbar puncture. A linear mixed-effects model was used to estimate the correlations between the Yeo-Johnson transformed harmonic regression wave amplitude (HRWa-YJt) with the predictors (IOPi, VDist and ICP). A comparison of the model coefficients was done by calculating the weighted Beta (βx) coefficients.
The median HRWa in the ICPn group was higher in the retinal veins (4.563, interquartile range (IQR) = 3.656) compared to the retinal arteries (3.475, IQR = 2.458), p<0.0001. In contrast, the ICPh group demonstrated a reduction in the median venous HRWa (3.655, IQR = 3.223) and an elevation in the median arterial HRWa (3.616, IQR = 2.715), p<0.0001. Interactions of the pulsation amplitude with ICP showed a significant disordinal interaction and the loss of a main effect of the Fourier sine coefficient (bn1) in the ICPh group, suggesting that this coefficient reflects the retinal vascular response to ICP wave. The linear mixed-effects model (LME) showed the decay in the venous (HRWa-YJt) was almost twice that in the retinal arteries (-0.067±0.002 compared to -0.028±0.0021 respectively, p<0.00001). The overall interaction models had a total explanatory power of (conditional R2) 38.7%, and 42% of which the fixed effects explained 8.8%, and 5.8% of the variance (marginal R2) for the venous and arterial models respectively. A comparison of the damping effect of VDist and ICP showed that ICP had less influence on pulse decay than distance in the retinal arteries (βICP = -0.21, se = ±0.017 compared to [Formula: see text], se = ±0.019), whereas the mean value was equal for the retinal veins (venous [Formula: see text], se = ±0.015, βICP = -0.42, se = ±0.019).
The retinal vascular pulsation characteristics in the ICPh group showed high retinal arterial and low venous pulsation amplitudes. Interactions between retinal vascular pulsation amplitude and ICP suggest that the Fourier sine coefficient bn1 reflects the retinal vascular response to the ICP wave. Although a matrix of regression lines showed high linear characteristics, the low model explanatory power precludes its use as a predictor of ICP. These results may guide future predictive modelling in non-invasive estimation of ICP using modified photoplethysmography.
比较正常颅内压(ICPn)和高颅内压(ICPh)患者的视网膜血管搏动特征,并在傅里叶域量化眼内压、颅内压和视网膜血管脉搏幅度之间的相互作用。
使用改良光体积描记术和同时眼动描记术对 21 名受试者进行检查。对时间序列中的每个像素拟合谐波回归模型,并用于量化视网膜血管脉搏波参数,包括谐波回归波幅度(HRWa)。在不同的眼内压(IOPi)诱导范围内测量脉冲波衰减,作为沿血管(VDist)距离的函数。使用腰椎穿刺测量颅内压(ICP)。使用线性混合效应模型估计 Yeo-Johnson 变换后的谐波回归波幅度(HRWa-YJt)与预测因子(IOPi、VDist 和 ICP)之间的相关性。通过计算加权 Beta(βx)系数来比较模型系数。
在 ICPn 组中,视网膜静脉的 HRWa 中位数(4.563,四分位距(IQR)=3.656)高于视网膜动脉(3.475,IQR=2.458),p<0.0001。相比之下,ICPh 组的静脉 HRWa 中位数(3.655,IQR=3.223)降低,动脉 HRWa 中位数(3.616,IQR=2.715)升高,p<0.0001。脉搏幅度与 ICP 的相互作用显示出显著的无序相互作用,以及傅里叶正弦系数(bn1)的主要效应在 ICPh 组中的丧失,这表明该系数反映了视网膜血管对 ICP 波的反应。线性混合效应模型(LME)显示静脉(HRWa-YJt)的衰减几乎是视网膜动脉的两倍(-0.067±0.002 与-0.028±0.0021 相比,p<0.00001)。总体交互模型的总解释能力为(条件 R2)38.7%,其中固定效应解释了 8.8%,方差(边际 R2)分别为静脉和动脉模型的 5.8%。比较 VDist 和 ICP 的阻尼效果表明,ICP 对视网膜动脉脉搏衰减的影响小于距离(βICP=-0.21,se=±0.017 与[公式:见文本],se=±0.019),而视网膜静脉的平均值相等(静脉[公式:见文本],se=±0.015,βICP=-0.42,se=±0.019)。
ICPh 组的视网膜血管搏动特征表现为高视网膜动脉和低视网膜静脉搏动幅度。视网膜血管搏动幅度与 ICP 之间的相互作用表明,傅里叶正弦系数 bn1 反映了视网膜血管对 ICP 波的反应。尽管回归线矩阵显示出高度的线性特征,但模型的低解释能力排除了其作为 ICP 预测因子的使用。这些结果可能会指导未来使用改良光体积描记术对非侵入性颅内压估计进行预测建模。