Suppr超能文献

机器学习模型预测创伤性脑损伤患者死亡率风险的预测性能:系统评价和荟萃分析。

Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis.

机构信息

Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, China.

Intensive Care Department, Guangxi Medical University First Affiliated Hospital, Ward 1, No. 6 Shuangyong Road, Qingxiu District, Guangxi Zhuang Autonomous Region, Nanning, China.

出版信息

BMC Med Inform Decis Mak. 2023 Jul 29;23(1):142. doi: 10.1186/s12911-023-02247-8.

Abstract

PURPOSE

With the in-depth application of machine learning(ML) in clinical practice, it has been used to predict the mortality risk in patients with traumatic brain injuries(TBI). However, there are disputes over its predictive accuracy. Therefore, we implemented this systematic review and meta-analysis, to explore the predictive value of ML for TBI.

METHODOLOGY

We systematically retrieved literature published in PubMed, Embase.com, Cochrane, and Web of Science as of November 27, 2022. The prediction model risk of bias(ROB) assessment tool (PROBAST) was used to assess the ROB of models and the applicability of reviewed questions. The random-effects model was adopted for the meta-analysis of the C-index and accuracy of ML models, and a bivariate mixed-effects model for the meta-analysis of the sensitivity and specificity.

RESULT

A total of 47 papers were eligible, including 156 model, with 122 newly developed ML models and 34 clinically recommended mature tools. There were 98 ML models predicting the in-hospital mortality in patients with TBI; the pooled C-index, sensitivity, and specificity were 0.86 (95% CI: 0.84, 0.87), 0.79 (95% CI: 0.75, 0.82), and 0.89 (95% CI: 0.86, 0.92), respectively. There were 24 ML models predicting the out-of-hospital mortality; the pooled C-index, sensitivity, and specificity were 0.83 (95% CI: 0.81, 0.85), 0.74 (95% CI: 0.67, 0.81), and 0.75 (95% CI: 0.66, 0.82), respectively. According to multivariate analysis, GCS score, age, CT classification, pupil size/light reflex, glucose, and systolic blood pressure (SBP) exerted the greatest impact on the model performance.

CONCLUSION

According to the systematic review and meta-analysis, ML models are relatively accurate in predicting the mortality of TBI. A single model often outperforms traditional scoring tools, but the pooled accuracy of models is close to that of traditional scoring tools. The key factors related to model performance include the accepted clinical variables of TBI and the use of CT imaging.

摘要

目的

随着机器学习(ML)在临床实践中的深入应用,它已被用于预测创伤性脑损伤(TBI)患者的死亡风险。然而,其预测准确性存在争议。因此,我们进行了这项系统评价和荟萃分析,以探讨 ML 对 TBI 的预测价值。

方法

我们系统地检索了截至 2022 年 11 月 27 日在 PubMed、Embase.com、Cochrane 和 Web of Science 上发表的文献。采用预测模型风险偏倚(PROBAST)评估工具评估模型的 ROB 和综述问题的适用性。采用随机效应模型进行 ML 模型 C 指数和准确性的荟萃分析,采用双变量混合效应模型进行敏感性和特异性的荟萃分析。

结果

共纳入 47 篇论文,包括 156 个模型,其中 122 个为新开发的 ML 模型,34 个为临床推荐的成熟工具。有 98 个 ML 模型预测 TBI 患者住院期间的死亡率;汇总的 C 指数、敏感性和特异性分别为 0.86(95%CI:0.84,0.87)、0.79(95%CI:0.75,0.82)和 0.89(95%CI:0.86,0.92)。有 24 个 ML 模型预测院外死亡率;汇总的 C 指数、敏感性和特异性分别为 0.83(95%CI:0.81,0.85)、0.74(95%CI:0.67,0.81)和 0.75(95%CI:0.66,0.82)。根据多变量分析,GCS 评分、年龄、CT 分类、瞳孔大小/光反射、血糖和收缩压(SBP)对模型性能的影响最大。

结论

根据系统评价和荟萃分析,ML 模型在预测 TBI 死亡率方面具有较高的准确性。单个模型通常优于传统评分工具,但模型的汇总准确性与传统评分工具相近。与模型性能相关的关键因素包括 TBI 的公认临床变量和 CT 成像的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d650/10385965/9dab05325098/12911_2023_2247_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验