Suppr超能文献

具有可逆光致变色超长磷光的零维卤化物混合体玻璃

Zero-dimensional halide hybrid bulk glass exhibiting reversible photochromic ultralong phosphorescence.

作者信息

Nie Fei, Yan Dongpeng

机构信息

Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

出版信息

Nat Commun. 2024 Jun 29;15(1):5519. doi: 10.1038/s41467-024-49886-7.

Abstract

Dynamically responsive materials, capable of reversible changes in color appearance and/or photoemission upon external stimuli, have attracted substantial attention across various fields. This study presents an effective approach wherein switchable modulation of photochromism and ultralong phosphorescence can be achieved simultaneously in a zero-dimensional organic-inorganic halide hybrid glass doped with 4,4´-bipyridine. The facile fabrication of large-scale glasses is accomplished through a combined grinding-melting-quenching process. The persistent luminescence can be regulated through the photochromic switch induced by photo-generated radicals. Furthermore, the incorporation of the aggregation-induced chirality effect generates intriguing circularly polarized luminescence, with an optical dissymmetry factor (g) reaching the order of 10. Exploiting the dynamic ultralong phosphorescence, this work further achieves promising applications, such as three-dimensional optical storage, rewritable photo-patterning, and multi-mode anti-counterfeiting with ease. Therefore, this study introduces a smart hybrid glass platform as a new photo-responsive switchable system, offering versatility for a wide array of photonic applications.

摘要

能够在外部刺激下发生颜色外观和/或光发射可逆变化的动态响应材料,在各个领域都引起了广泛关注。本研究提出了一种有效的方法,即在掺杂4,4´-联吡啶的零维有机-无机卤化物混合玻璃中,可同时实现光致变色和超长磷光的可切换调制。通过研磨-熔化-淬火相结合的过程,实现了大规模玻璃的简便制备。持久发光可通过光生自由基诱导的光致变色开关进行调节。此外,聚集诱导手性效应的引入产生了有趣的圆偏振发光,光学不对称因子(g)达到10的量级。利用动态超长磷光,这项工作进一步轻松实现了如三维光存储、可重写光图案化和多模式防伪等有前景的应用。因此,本研究引入了一种智能混合玻璃平台作为一种新型的光响应可切换系统,为广泛的光子应用提供了多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ac/11217438/5e8681666bc9/41467_2024_49886_Fig1_HTML.jpg

相似文献

1
2
Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202402634. doi: 10.1002/anie.202402634. Epub 2024 Apr 3.
4
Stimuli-Responsive Circularly Polarized Organic Ultralong Room Temperature Phosphorescence.
Angew Chem Int Ed Engl. 2020 Mar 16;59(12):4756-4762. doi: 10.1002/anie.201915164. Epub 2020 Jan 30.
5
7
Photo-Controllable Ultralong Room-Temperature Phosphorescence: State of the Art.
Chemistry. 2024 Mar 7;30(14):e202303611. doi: 10.1002/chem.202303611. Epub 2024 Jan 4.
9
Multi-stimuli-responsive luminescence enabled by crown ether anchored chiral antimony halide phosphors.
Chem Sci. 2024 Feb 1;15(10):3530-3538. doi: 10.1039/d3sc06362c. eCollection 2024 Mar 6.
10
Integrating Achiral and Chiral Organic Ligands in Zero-Dimensional Hybrid Metal Halides to Boost Circularly Polarized Luminescence.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202306821. doi: 10.1002/anie.202306821. Epub 2023 Aug 7.

引用本文的文献

3
A universal strategy toward two-component organic-inorganic metal halide luminescent glasses and glass-crystal composites.
Sci Adv. 2025 May 30;11(22):eadu1982. doi: 10.1126/sciadv.adu1982. Epub 2025 May 28.
5
Chiral Luminescent Ion Pair (CLIP) Strategy Enables Amorphous Platinum Complexes Circularly Polarized Phosphorescence.
Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202501011. doi: 10.1002/anie.202501011. Epub 2025 Apr 21.
7
4D Assembly of Time-dependent Lanthanide Supramolecular Multicolor Phosphorescence for Encryption and Visual Sensing.
Adv Sci (Weinh). 2025 Apr;12(14):e2415418. doi: 10.1002/advs.202415418. Epub 2025 Feb 14.
9
pH-responsive supramolecular switch of a rationally designed dipyrroethene-based chromophore.
Chem Sci. 2024 Dec 16;16(4):1772-1782. doi: 10.1039/d4sc07016j. eCollection 2025 Jan 22.
10
Bio-sourced flexible supramolecular glasses for dynamic and full-color phosphorescence.
Nat Commun. 2024 Nov 3;15(1):9491. doi: 10.1038/s41467-024-53963-2.

本文引用的文献

1
Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202402634. doi: 10.1002/anie.202402634. Epub 2024 Apr 3.
3
6
Supercooled Liquids with Dynamic Room Temperature Phosphorescence Using Terminal Hydroxyl Engineering.
Angew Chem Int Ed Engl. 2023 Jun 12;62(24):e202301564. doi: 10.1002/anie.202301564. Epub 2023 May 4.
7
Glass Formation in Hybrid Organic-Inorganic Perovskites.
Angew Chem Int Ed Engl. 2023 Jul 10;62(28):e202302406. doi: 10.1002/anie.202302406. Epub 2023 Apr 27.
9
Biomolecular glass with amino acid and peptide nanoarchitectonics.
Sci Adv. 2023 Mar 15;9(11):eadd8105. doi: 10.1126/sciadv.add8105. Epub 2023 Mar 17.
10
Fabrication of Super-Sized Metal Inorganic-Organic Hybrid Glass with Supramolecular Network via Crystallization-Suppressing Approach.
Angew Chem Int Ed Engl. 2023 Mar 27;62(14):e202218094. doi: 10.1002/anie.202218094. Epub 2023 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验