Suppr超能文献

机器学习鉴定 NSCLC 肿瘤微环境的预后亚型。

Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC.

机构信息

Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA.

Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.

出版信息

Sci Rep. 2024 Jul 1;14(1):15004. doi: 10.1038/s41598-024-64977-7.

Abstract

The tumor microenvironment (TME) plays a fundamental role in tumorigenesis, tumor progression, and anti-cancer immunity potential of emerging cancer therapeutics. Understanding inter-patient TME heterogeneity, however, remains a challenge to efficient drug development. This article applies recent advances in machine learning (ML) for survival analysis to a retrospective study of NSCLC patients who received definitive surgical resection and immune pathology following surgery. ML methods are compared for their effectiveness in identifying prognostic subtypes. Six survival models, including Cox regression and five survival machine learning methods, were calibrated and applied to predict survival for NSCLC patients based on PD-L1 expression, CD3 expression, and ten baseline patient characteristics. Prognostic subregions of the biomarker space are delineated for each method using synthetic patient data augmentation and compared between models for overall survival concordance. A total of 423 NSCLC patients (46% female; median age [inter quantile range]: 67 [60-73]) treated with definite surgical resection were included in the study. And 219 (52%) patients experienced events during the observation period consisting of a maximum follow-up of 10 years and median follow up 78 months. The random survival forest (RSF) achieved the highest predictive accuracy, with a C-index of 0.84. The resultant biomarker subtypes demonstrate that patients with high PD-L1 expression combined with low CD3 counts experience higher risk of death within five-years of surgical resection.

摘要

肿瘤微环境(TME)在肿瘤发生、肿瘤进展和新兴癌症治疗的抗癌免疫潜力中起着至关重要的作用。然而,理解患者间 TME 异质性仍然是提高药物开发效率的挑战。本文将机器学习(ML)在生存分析中的最新进展应用于接受确定性手术切除和术后免疫病理检查的 NSCLC 患者的回顾性研究。比较了 ML 方法在识别预后亚型方面的有效性。基于 PD-L1 表达、CD3 表达和 10 项基线患者特征,针对 6 种生存模型(包括 Cox 回归和 5 种生存机器学习方法)进行了校准,并应用于预测 NSCLC 患者的生存情况。使用合成患者数据扩充来划定每个方法的生物标志物空间的预后子区域,并比较模型之间的总体生存一致性。共有 423 名接受确定性手术切除治疗的 NSCLC 患者(46%为女性;中位年龄[四分位间距]:67 [60-73])纳入研究。在观察期间有 219 名(52%)患者发生了事件,观察期最长为 10 年,中位随访时间为 78 个月。随机生存森林(RSF)实现了最高的预测准确性,C 指数为 0.84。由此产生的生物标志物亚型表明,PD-L1 表达高且 CD3 计数低的患者在手术后五年内死亡风险更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bf9/11217297/8e871ef77626/41598_2024_64977_Fig1_HTML.jpg

相似文献

1
Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC.
Sci Rep. 2024 Jul 1;14(1):15004. doi: 10.1038/s41598-024-64977-7.
2
PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review.
Lung Cancer. 2017 Oct;112:200-215. doi: 10.1016/j.lungcan.2017.08.005. Epub 2017 Aug 10.
4
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
7
Expression and clinical significance of PD-L1 and c-Myc in non-small cell lung cancer.
J Cancer Res Clin Oncol. 2019 Nov;145(11):2663-2674. doi: 10.1007/s00432-019-03025-8. Epub 2019 Sep 20.
8
HMGB1 assists the predictive value of tumor PD-L1 expression for the efficacy of anti-PD-1/PD-L1 antibody in NSCLC.
Cancer Chemother Pharmacol. 2025 Jan 24;95(1):28. doi: 10.1007/s00280-025-04751-2.

引用本文的文献

1
Bayesian Counterfactual Machine Learning Individualizes Radiation Modality Selection to Mitigate Immunosuppression.
JCO Clin Cancer Inform. 2025 Aug;9:e2500058. doi: 10.1200/CCI-25-00058. Epub 2025 Sep 8.
2
Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges.
Biomedicines. 2025 Feb 14;13(2):470. doi: 10.3390/biomedicines13020470.

本文引用的文献

1
OBLIQUE RANDOM SURVIVAL FORESTS.
Ann Appl Stat. 2019 Sep;13(3):1847-1883. doi: 10.1214/19-aoas1261. Epub 2019 Oct 17.
2
Prognostic Role of Soluble Programmed Death Ligand 1 in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis.
Front Oncol. 2021 Dec 23;11:774131. doi: 10.3389/fonc.2021.774131. eCollection 2021.
3
Analysis of Delayed Surgical Treatment and Oncologic Outcomes in Clinical Stage I Non-Small Cell Lung Cancer.
JAMA Netw Open. 2021 May 3;4(5):e2111613. doi: 10.1001/jamanetworkopen.2021.11613.
4
Biology of NSCLC: Interplay between Cancer Cells, Radiation and Tumor Immune Microenvironment.
Cancers (Basel). 2021 Feb 12;13(4):775. doi: 10.3390/cancers13040775.
5
Biomarker Discovery and Validation: Statistical Considerations.
J Thorac Oncol. 2021 Apr;16(4):537-545. doi: 10.1016/j.jtho.2021.01.1616. Epub 2021 Feb 2.
6
Machine learning prediction of the adverse outcome for nontraumatic subarachnoid hemorrhage patients.
Ann Clin Transl Neurol. 2020 Nov;7(11):2178-2185. doi: 10.1002/acn3.51208. Epub 2020 Sep 29.
7
The Effect of Advances in Lung-Cancer Treatment on Population Mortality.
N Engl J Med. 2020 Aug 13;383(7):640-649. doi: 10.1056/NEJMoa1916623.
8
Cancer treatment and survivorship statistics, 2019.
CA Cancer J Clin. 2019 Sep;69(5):363-385. doi: 10.3322/caac.21565. Epub 2019 Jun 11.
10
Global Epidemiology of Lung Cancer.
Ann Glob Health. 2019 Jan 22;85(1):8. doi: 10.5334/aogh.2419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验