Suppr超能文献

倾斜随机生存森林

OBLIQUE RANDOM SURVIVAL FORESTS.

作者信息

Jaeger Byron C, Long D Leann, Long Dustin M, Sims Mario, Szychowski Jeff M, Min Yuan-I, Mcclure Leslie A, Howard George, Simon Noah

机构信息

University of Alabama at Birmingham.

University of Mississippi Medical Center.

出版信息

Ann Appl Stat. 2019 Sep;13(3):1847-1883. doi: 10.1214/19-aoas1261. Epub 2019 Oct 17.

Abstract

We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF's predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression, and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its 10-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).

摘要

我们介绍并评估了斜向随机生存森林(ORSF)。ORSF是一种用于右删失生存数据的集成方法,它使用输入变量的线性组合来递归划分一组训练数据。在每个递归划分步骤中,使用正则化的Cox比例风险模型来识别输入变量的线性组合。使用模拟数据和真实数据的基准结果表明,与随机生存森林、条件推断森林、回归和提升方法相比,ORSF的预测风险函数具有较高的预后价值。在对杰克逊心脏研究数据的应用中,我们使用ORSF展示了变量和偏倚依赖性,并突出了其针对动脉粥样硬化性心血管疾病事件(ASCVD;中风、冠心病)的10年预测风险函数的特征。我们展示了根据ORSF、条件推断森林和汇总队列风险方程进行变量和偏倚效应估计比较的可视化结果。提供拟合ORSF以及创建变量和偏倚依赖性图功能的obliqueRSF R包可在综合R存档网络(CRAN)上获取。

相似文献

1
OBLIQUE RANDOM SURVIVAL FORESTS.
Ann Appl Stat. 2019 Sep;13(3):1847-1883. doi: 10.1214/19-aoas1261. Epub 2019 Oct 17.
3
Unbiased split variable selection for random survival forests using maximally selected rank statistics.
Stat Med. 2017 Apr 15;36(8):1272-1284. doi: 10.1002/sim.7212. Epub 2017 Jan 15.
4
Decision tree modeling using R.
Ann Transl Med. 2016 Aug;4(15):275. doi: 10.21037/atm.2016.05.14.
5
Random forest methodology for model-based recursive partitioning: the mobForest package for R.
BMC Bioinformatics. 2013 Apr 11;14:125. doi: 10.1186/1471-2105-14-125.
7
Accelerated and Interpretable Oblique Random Survival Forests.
J Comput Graph Stat. 2024;33(1):192-207. doi: 10.1080/10618600.2023.2231048.
8
Ensemble methods for survival function estimation with time-varying covariates.
Stat Methods Med Res. 2022 Nov;31(11):2217-2236. doi: 10.1177/09622802221111549. Epub 2022 Jul 27.
9
A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
BMC Med Res Methodol. 2021 Sep 25;21(1):193. doi: 10.1186/s12874-021-01386-8.
10
Random survival forest with space extensions for censored data.
Artif Intell Med. 2017 Jun;79:52-61. doi: 10.1016/j.artmed.2017.06.005. Epub 2017 Jun 20.

引用本文的文献

2
Predicting survival in small cell lung cancer patients undergoing various treatments: a machine learning approach.
Transl Lung Cancer Res. 2025 Mar 31;14(3):736-748. doi: 10.21037/tlcr-24-331. Epub 2025 Mar 14.
3
Developing a prediction model for cognitive impairment in older adults following critical illness.
BMC Geriatr. 2024 Nov 29;24(1):982. doi: 10.1186/s12877-024-05567-0.
5
Accelerated and Interpretable Oblique Random Survival Forests.
J Comput Graph Stat. 2024;33(1):192-207. doi: 10.1080/10618600.2023.2231048.
6
Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC.
Sci Rep. 2024 Jul 1;14(1):15004. doi: 10.1038/s41598-024-64977-7.
7
Random forests for survival data: which methods work best and under what conditions?
Int J Biostat. 2024 Apr 24;20(2):315-345. doi: 10.1515/ijb-2023-0056. eCollection 2024 Nov 1.
8
Tutorial on survival modeling with applications to omics data.
Bioinformatics. 2024 Mar 4;40(3). doi: 10.1093/bioinformatics/btae132.
10
Development of a risk model to predict prognosis in breast cancer based on cGAS-STING-related genes.
Front Genet. 2023 Mar 27;14:1121018. doi: 10.3389/fgene.2023.1121018. eCollection 2023.

本文引用的文献

1
Using simulation studies to evaluate statistical methods.
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
2
The c-index is not proper for the evaluation of $t$-year predicted risks.
Biostatistics. 2019 Apr 1;20(2):347-357. doi: 10.1093/biostatistics/kxy006.
6
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
J Stat Softw. 2011 Mar;39(5):1-13. doi: 10.18637/jss.v039.i05.
7
Reinforcement Learning Trees.
J Am Stat Assoc. 2015;110(512):1770-1784. doi: 10.1080/01621459.2015.1036994. Epub 2015 Apr 16.
8
Evaluating Random Forests for Survival Analysis using Prediction Error Curves.
J Stat Softw. 2012 Sep;50(11):1-23. doi: 10.18637/jss.v050.i11.
9
Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring.
Stat Med. 2013 Jun 15;32(13):2173-84. doi: 10.1002/sim.5681. Epub 2012 Nov 22.
10
Association of race and sex with risk of incident acute coronary heart disease events.
JAMA. 2012 Nov 7;308(17):1768-74. doi: 10.1001/jama.2012.14306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验