Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Vironova AB, Stockholm, Sweden.
Sci Rep. 2024 Jul 1;14(1):14995. doi: 10.1038/s41598-024-65597-x.
Transmission electron microscopy (TEM) is an imaging technique used to visualize and analyze nano-sized structures and objects such as virus particles. Light microscopy can be used to diagnose diseases or characterize e.g. blood cells. Since samples under microscopes exhibit certain symmetries, such as global rotation invariance, equivariant neural networks are presumed to be useful. In this study, a baseline convolutional neural network is constructed in the form of the commonly used VGG16 classifier. Thereafter, it is modified to be equivariant to the p4 symmetry group of rotations of multiples of 90° using group convolutions. This yields a number of benefits on a TEM virus dataset, including higher top validation set accuracy by on average 7.6% and faster convergence during training by on average 23.1% of that of the baseline. Similarly, when training and testing on images of blood cells, the convergence time for the equivariant neural network is 7.9% of that of the baseline. From this it is concluded that augmentation strategies for rotation can be skipped. Furthermore, when modelling the accuracy versus amount of TEM virus training data with a power law, the equivariant network has a slope of - 0.43 compared to - 0.26 of the baseline. Thus the equivariant network learns faster than the baseline when more training data is added. This study extends previous research on equivariant neural networks applied to images which exhibit symmetries to isometric transformations.
透射电子显微镜(TEM)是一种用于可视化和分析纳米级结构和物体的成像技术,例如病毒颗粒。 显微镜可用于诊断疾病或表征例如血细胞。 由于显微镜下的样本表现出某些对称性,例如全局旋转不变性,因此假定等变神经网络是有用的。 在这项研究中,以常用的 VGG16 分类器的形式构建了基准卷积神经网络。 此后,通过使用组卷积将其修改为对 90°倍数的旋转的 p4 对称群等变。 这为 TEM 病毒数据集带来了许多好处,包括平均提高了 7.6%的最高验证集准确性和平均快 23.1%的训练收敛速度。 同样,在对血细胞图像进行训练和测试时,等变神经网络的收敛时间是基线的 7.9%。 由此可以得出结论,可以跳过用于旋转的增强策略。 此外,当使用幂律对 TEM 病毒训练数据量与准确性进行建模时,与基线的 -0.26 相比,等变网络的斜率为-0.43。 因此,当添加更多的训练数据时,等变网络比基线学习得更快。 这项研究扩展了先前关于应用于具有等距变换的对称性的图像的等变神经网络的研究。
Bioinformatics. 2019-7-15
Comput Biol Med. 2022-12
IEEE Trans Pattern Anal Mach Intell. 2024-5
Med Image Anal. 2020-10
IEEE Trans Cybern. 2023-11
IEEE Trans Pattern Anal Mach Intell. 2023-2
Inverse Probl. 2021-8
Interface Focus. 2021-10-12
Comput Methods Programs Biomed. 2021-9
Bioinformatics. 2019-7-15
Nat Med. 2019-1-7