文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用等变神经网络对旋转不变生物医学图像进行分类。

Classification of rotation-invariant biomedical images using equivariant neural networks.

机构信息

Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden.

Vironova AB, Stockholm, Sweden.

出版信息

Sci Rep. 2024 Jul 1;14(1):14995. doi: 10.1038/s41598-024-65597-x.


DOI:10.1038/s41598-024-65597-x
PMID:38951630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11217465/
Abstract

Transmission electron microscopy (TEM) is an imaging technique used to visualize and analyze nano-sized structures and objects such as virus particles. Light microscopy can be used to diagnose diseases or characterize e.g. blood cells. Since samples under microscopes exhibit certain symmetries, such as global rotation invariance, equivariant neural networks are presumed to be useful. In this study, a baseline convolutional neural network is constructed in the form of the commonly used VGG16 classifier. Thereafter, it is modified to be equivariant to the p4 symmetry group of rotations of multiples of 90° using group convolutions. This yields a number of benefits on a TEM virus dataset, including higher top validation set accuracy by on average 7.6% and faster convergence during training by on average 23.1% of that of the baseline. Similarly, when training and testing on images of blood cells, the convergence time for the equivariant neural network is 7.9% of that of the baseline. From this it is concluded that augmentation strategies for rotation can be skipped. Furthermore, when modelling the accuracy versus amount of TEM virus training data with a power law, the equivariant network has a slope of - 0.43 compared to - 0.26 of the baseline. Thus the equivariant network learns faster than the baseline when more training data is added. This study extends previous research on equivariant neural networks applied to images which exhibit symmetries to isometric transformations.

摘要

透射电子显微镜(TEM)是一种用于可视化和分析纳米级结构和物体的成像技术,例如病毒颗粒。 显微镜可用于诊断疾病或表征例如血细胞。 由于显微镜下的样本表现出某些对称性,例如全局旋转不变性,因此假定等变神经网络是有用的。 在这项研究中,以常用的 VGG16 分类器的形式构建了基准卷积神经网络。 此后,通过使用组卷积将其修改为对 90°倍数的旋转的 p4 对称群等变。 这为 TEM 病毒数据集带来了许多好处,包括平均提高了 7.6%的最高验证集准确性和平均快 23.1%的训练收敛速度。 同样,在对血细胞图像进行训练和测试时,等变神经网络的收敛时间是基线的 7.9%。 由此可以得出结论,可以跳过用于旋转的增强策略。 此外,当使用幂律对 TEM 病毒训练数据量与准确性进行建模时,与基线的 -0.26 相比,等变网络的斜率为-0.43。 因此,当添加更多的训练数据时,等变网络比基线学习得更快。 这项研究扩展了先前关于应用于具有等距变换的对称性的图像的等变神经网络的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/c769db58c2d8/41598_2024_65597_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/650313c7841a/41598_2024_65597_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/070a500140ab/41598_2024_65597_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/670b3b6fcc25/41598_2024_65597_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/e143260a41b2/41598_2024_65597_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/40e8706a0784/41598_2024_65597_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/c769db58c2d8/41598_2024_65597_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/650313c7841a/41598_2024_65597_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/070a500140ab/41598_2024_65597_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/670b3b6fcc25/41598_2024_65597_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/e143260a41b2/41598_2024_65597_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/40e8706a0784/41598_2024_65597_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e4/11217465/c769db58c2d8/41598_2024_65597_Fig6_HTML.jpg

相似文献

[1]
Classification of rotation-invariant biomedical images using equivariant neural networks.

Sci Rep. 2024-7-1

[2]
Rotation equivariant and invariant neural networks for microscopy image analysis.

Bioinformatics. 2019-7-15

[3]
A rotation meanout network with invariance for dermoscopy image classification and retrieval.

Comput Biol Med. 2022-12

[4]
Interpretable Rotation-Equivariant Quaternion Neural Networks for 3D Point Cloud Processing.

IEEE Trans Pattern Anal Mach Intell. 2024-5

[5]
Roto-translation equivariant convolutional networks: Application to histopathology image analysis.

Med Image Anal. 2021-2

[6]
Local rotation invariance in 3D CNNs.

Med Image Anal. 2020-10

[7]
Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation.

IEEE Trans Cybern. 2023-11

[8]
Equivariant Wavelets: Fast Rotation and Translation Invariant Wavelet Scattering Transforms.

IEEE Trans Pattern Anal Mach Intell. 2023-2

[9]
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.

Nat Commun. 2022-5-4

[10]
Equivariant neural networks for inverse problems.

Inverse Probl. 2021-8

引用本文的文献

[1]
Heterogeneous virus classification using a functional deep learning model based on transmission electron microscopy images.

Sci Rep. 2024-11-22

本文引用的文献

[1]
MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification.

Sci Data. 2023-1-19

[2]
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.

Nat Commun. 2022-5-4

[3]
Imaging and visualizing SARS-CoV-2 in a new era for structural biology.

Interface Focus. 2021-10-12

[4]
TEM virus images: Benchmark dataset and deep learning classification.

Comput Methods Programs Biomed. 2021-9

[5]
Roto-translation equivariant convolutional networks: Application to histopathology image analysis.

Med Image Anal. 2021-2

[6]
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems.

Data Brief. 2020-4-8

[7]
Rotation equivariant and invariant neural networks for microscopy image analysis.

Bioinformatics. 2019-7-15

[8]
A guide to deep learning in healthcare.

Nat Med. 2019-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索