Woo Kyung Seok, Park Hyungjun, Ghenzi Nestor, Talin A Alec, Jeong Taeyoung, Choi Jung-Hae, Oh Sangheon, Jang Yoon Ho, Han Janguk, Williams R Stanley, Kumar Suhas, Hwang Cheol Seong
Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Sandia National Laboratories, Livermore, California 94551, United States.
ACS Nano. 2024 Jul 2;18(26):17007-17017. doi: 10.1021/acsnano.4c03238. Epub 2024 Jun 19.
Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors. The varying behaviors are accessed via facile control over the filament formed within the memristor, enabled by the interplay between the two active ionic species (oxygen vacancies and metal cations). This solution is unlike single-species ion migration employed in most other memristors, which makes their behavior difficult to control. By reconfiguring a single crossbar array of hybrid memristors, two different applications that usually require distinct types of devices are demonstrated - reprogrammable heterogeneous reservoir computing and arbitrary non-Euclidean graph networks. Thus, this work outlines a potential path toward functionally reconfigurable postdigital computers.
神经形态计算有望在处理数据密集型任务时成为传统数字处理器的节能替代方案,这主要得益于易失性(神经元)和非易失性(突触)电阻式开关或忆阻器的发展。然而,尽管基于忆阻器的技术具有能源效率,但目前缺乏功能可调性,从而限制了它们与任意可编程(通用)数字计算机的竞争力。这项工作介绍了一种双端双层忆阻器,它可以在神经元、突触和混合行为之间进行调节。通过对忆阻器内形成的细丝进行简便控制来实现不同的行为,这是由两种活性离子物种(氧空位和金属阳离子)之间的相互作用实现的。这种解决方案不同于大多数其他忆阻器中采用的单物种离子迁移,后者使得它们的行为难以控制。通过重新配置混合忆阻器的单个交叉阵列,展示了通常需要不同类型器件的两种不同应用——可重新编程的异构储能计算和任意非欧几里得图网络。因此,这项工作勾勒出了一条通往功能可重构后数字计算机的潜在路径。