Gong Chaewon, Park Sunghwan, Eom Seongmun, Choi Youngwoo, Park Sang-Hee Ko, Hong Seungbum
Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
KAIST Institute for NanoCentury (KINC), KAIST, Daejeon 34141, Republic of Korea.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43264-43274. doi: 10.1021/acsami.5c10123. Epub 2025 Jul 20.
Resistive switching, characterized by reversible changes in material resistance under external electric fields, underpins resistive random-access memory (ReRAM) technology, which holds promise for next-generation memory and neuromorphic devices owing to its fast switching speed, nonvolatility, and structural simplicity. Among materials exhibiting resistive switching, transition metal oxides emerge as leading candidates for ReRAM components due to their high CMOS compatibility. However, complex thermal, electrical, chemical, and mechanical interactions during switching introduce variability, leaving the underlying mechanisms insufficiently understood. Therefore, this study investigates the ionic-electronic dynamics involved in resistive switching, focusing on the electroforming and reset processes in TiO thin films─a representative transition metal oxide─through a colocalized, multimodal scanning probe microscopy (SPM) approach. Conductive atomic force microscopy (C-AFM) induces resistive switching and visualizes modulated spatial current pathways, while electrochemical strain microscopy (ESM) and Kelvin probe force microscopy (KPFM) capture corresponding ionic and electronic interplays at the same switching event and site. This integrated strategy provides direct nanoscale correlations that are difficult to resolve with single-mode or separate modality measurements, revealing how defect ion modulation and electron injection in concert govern the switching behavior. Furthermore, topography degradation observed during reset processes suggests that facilitated diffusion of injected oxygen ions along defect-enriched sites enhances retention properties of high resistance states. Based on these findings, the study proposes a potential switching mechanism, emphasizing the role of ionic-electronic dynamics.
电阻开关,其特征是在外部电场作用下材料电阻发生可逆变化,是电阻式随机存取存储器(ReRAM)技术的基础,由于其快速的开关速度、非易失性和结构简单性,该技术在下一代存储器和神经形态器件方面具有广阔前景。在表现出电阻开关特性的材料中,过渡金属氧化物因其与CMOS的高度兼容性而成为ReRAM组件的主要候选材料。然而,开关过程中复杂的热、电、化学和机械相互作用会引入变异性,导致其潜在机制仍未得到充分理解。因此,本研究通过共定位多模态扫描探针显微镜(SPM)方法,研究了电阻开关中涉及的离子-电子动力学,重点关注TiO薄膜(一种典型的过渡金属氧化物)中的电形成和复位过程。导电原子力显微镜(C-AFM)可诱导电阻开关并可视化调制后的空间电流路径,而电化学应变显微镜(ESM)和开尔文探针力显微镜(KPFM)则在同一开关事件和位点捕捉相应的离子和电子相互作用。这种集成策略提供了单模态或单独模态测量难以解析的直接纳米级相关性,揭示了缺陷离子调制和电子注入如何协同控制开关行为。此外,复位过程中观察到的形貌退化表明,注入的氧离子沿富含缺陷的位点扩散促进,增强了高电阻状态的保持特性。基于这些发现,该研究提出了一种潜在的开关机制,强调了离子-电子动力学的作用。