Suppr超能文献

生成式人工智能揭示了正电子发射断层扫描(PET)的见解:脑淀粉样蛋白动力学与定量分析。

Generative AI unlocks PET insights: brain amyloid dynamics and quantification.

作者信息

Bossa Matías Nicolás, Nakshathri Akshaya Ganesh, Berenguer Abel Díaz, Sahli Hichem

机构信息

Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium.

出版信息

Front Aging Neurosci. 2024 Jun 17;16:1410844. doi: 10.3389/fnagi.2024.1410844. eCollection 2024.

Abstract

INTRODUCTION

Studying the spatiotemporal patterns of amyloid accumulation in the brain over time is crucial in understanding Alzheimer's disease (AD). Positron Emission Tomography (PET) imaging plays a pivotal role because it allows for the visualization and quantification of abnormal amyloid beta (Aβ) load in the living brain, providing a powerful tool for tracking disease progression and evaluating the efficacy of anti-amyloid therapies. Generative artificial intelligence (AI) can learn complex data distributions and generate realistic synthetic images. In this study, we demonstrate for the first time the potential of Generative Adversarial Networks (GANs) to build a low-dimensional representation space that effectively describes brain amyloid load and its dynamics.

METHODS

Using a cohort of 1,259 subjects with AV45 PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we develop a 3D GAN model to project images into a latent representation space and generate back synthetic images. Then, we build a progression model on the representation space based on non-parametric ordinary differential equations to study brain amyloid evolution.

RESULTS

We found that global SUVR can be accurately predicted with a linear regression model only from the latent representation space ( = 0.08 ± 0.01). We generated synthetic PET trajectories and illustrated predicted Aβ change in four years compared with actual progression.

DISCUSSION

Generative AI can generate rich representations for statistical prediction and progression modeling and simulate evolution in synthetic patients, providing an invaluable tool for understanding AD, assisting in diagnosis, and designing clinical trials. The aim of this study was to illustrate the huge potential that generative AI has in brain amyloid imaging and to encourage its advancement by providing use cases and ideas for future research tracks.

摘要

引言

随着时间推移研究大脑中淀粉样蛋白积累的时空模式对于理解阿尔茨海默病(AD)至关重要。正电子发射断层扫描(PET)成像起着关键作用,因为它能够可视化和量化活体大脑中异常的淀粉样β(Aβ)负荷,为追踪疾病进展和评估抗淀粉样蛋白疗法的疗效提供了强大工具。生成式人工智能(AI)可以学习复杂的数据分布并生成逼真的合成图像。在本研究中,我们首次展示了生成对抗网络(GAN)构建低维表示空间的潜力,该空间能有效描述脑淀粉样蛋白负荷及其动态变化。

方法

我们使用来自阿尔茨海默病神经影像倡议(ADNI)的1259名有AV45 PET图像的受试者队列,开发了一个3D GAN模型,将图像投影到潜在表示空间并生成合成图像。然后,我们基于非参数常微分方程在表示空间上构建一个进展模型,以研究脑淀粉样蛋白的演变。

结果

我们发现仅从潜在表示空间通过线性回归模型就能准确预测全局标准化摄取值比率(SUVR)( = 0.08 ± 0.01)。我们生成了合成PET轨迹,并展示了与实际进展相比四年内预测的Aβ变化。

讨论

生成式AI可以为统计预测和进展建模生成丰富的表示,并模拟合成患者的演变,为理解AD、辅助诊断和设计临床试验提供了宝贵工具。本研究的目的是说明生成式AI在脑淀粉样蛋白成像方面的巨大潜力,并通过提供用例和未来研究方向的思路来鼓励其发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d5a/11215072/9fb7bac9a4d0/fnagi-16-1410844-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验