Maddury Sucheer, Desai Krish
Leland High School, San Jose, CA, United States.
Front Artif Intell. 2023 Feb 6;6:1091506. doi: 10.3389/frai.2023.1091506. eCollection 2023.
Amyloid deposition is a vital biomarker in the process of Alzheimer's diagnosis. F-florbetapir PET scans can provide valuable imaging data to determine cortical amyloid quantities. However, the process is labor and doctor intensive, requiring extremely specialized education and resources that may not be accessible to everyone, making the amyloid calculation process inefficient. Deep learning is a rising tool in Alzheimer's research which could be used to determine amyloid deposition.
Using data from the Alzheimer's Disease Neuroimaging Initiative, we identified 2,980 patients with PET imaging, clinical, and genetic data. We tested various ResNet, EfficientNet, and RegNet convolutional neural networks and later combined the best performing model with Gradient Boosting Decision Tree algorithms to predict standardized uptake value ratio (SUVR) of amyloid in each patient session. We tried several configurations to find the best model tuning for regression-to-SUVR.
We found that the RegNet X064 architecture combined with a grid search-tuned Gradient Boosting Decision Tree with 3 axial input slices and clinical and genetic data achieved the lowest loss. Using the mean-absolute-error metric, the loss converged to an MAE of 0.0441, equating to 96.4% accuracy across the 596-patient test set.
We showed that this method is more consistent and accessible in comparison to human readers from previous studies, with lower margins of error and substantially faster calculation times. We implemented our deep learning model on to a web application named DeepAD which allows our diagnostic tool to be accessible. DeepAD could be used in hospitals and clinics with resource limitations for amyloid deposition and shows promise for more imaging tasks as well.
淀粉样蛋白沉积是阿尔茨海默病诊断过程中的一个重要生物标志物。F-氟代硼吡咯正电子发射断层扫描(PET)可以提供有价值的成像数据,以确定皮质淀粉样蛋白的数量。然而,这个过程需要大量人力和医生参与,需要极其专业的知识和资源,并非每个人都能获得,这使得淀粉样蛋白计算过程效率低下。深度学习是阿尔茨海默病研究中一种新兴的工具,可用于确定淀粉样蛋白沉积。
利用阿尔茨海默病神经影像倡议组织的数据,我们识别出2980例有PET成像、临床和基因数据的患者。我们测试了各种残差网络(ResNet)、高效网络(EfficientNet)和正则网络(RegNet)卷积神经网络,随后将性能最佳的模型与梯度提升决策树算法相结合,以预测每位患者每次扫描时淀粉样蛋白的标准化摄取值比率(SUVR)。我们尝试了几种配置,以找到针对回归到SUVR的最佳模型调优方法。
我们发现,RegNet X064架构与经网格搜索调优的梯度提升决策树相结合,采用3个轴向输入切片以及临床和基因数据时,损失最低。使用平均绝对误差度量标准,损失收敛到平均绝对误差为0.0441,在596例患者的测试集中准确率达到96.4%。
我们表明,与先前研究中的人工判读相比,该方法更加一致且易于使用,误差幅度更小,计算时间大幅缩短。我们将深度学习模型应用于一个名为DeepAD的网络应用程序中,使我们的诊断工具易于使用。DeepAD可用于资源有限的医院和诊所进行淀粉样蛋白沉积检测,并且在更多成像任务中也显示出前景。