Suppr超能文献

开辟新路径:生成式建模在神经疾病研究中的作用。

Pioneering new paths: the role of generative modelling in neurological disease research.

作者信息

Seiler Moritz, Ritter Kerstin

机构信息

Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

出版信息

Pflugers Arch. 2025 Apr;477(4):571-589. doi: 10.1007/s00424-024-03016-w. Epub 2024 Oct 8.

Abstract

Recently, deep generative modelling has become an increasingly powerful tool with seminal work in a myriad of disciplines. This powerful modelling approach is supposed to not only have the potential to solve current problems in the medical field but also to enable personalised precision medicine and revolutionise healthcare through applications such as digital twins of patients. Here, the core concepts of generative modelling and popular modelling approaches are first introduced to consider the potential based on methodological concepts for the generation of synthetic data and the ability to learn a representation of observed data. These potentials will be reviewed using current applications in neuroimaging for data synthesis and disease decomposition in Alzheimer's disease and multiple sclerosis. Finally, challenges for further research and applications will be discussed, including computational and data requirements, model evaluation, and potential privacy risks.

摘要

最近,深度生成建模已成为一种越来越强大的工具,在众多学科中都有开创性的工作。这种强大的建模方法不仅有望解决医学领域当前的问题,还能通过患者数字孪生等应用实现个性化精准医疗并彻底改变医疗保健。在此,首先介绍生成建模的核心概念和流行的建模方法,以便基于用于生成合成数据的方法概念和学习观测数据表示的能力来考虑其潜力。将使用神经成像在阿尔茨海默病和多发性硬化症的数据合成与疾病分解方面的当前应用来回顾这些潜力。最后,将讨论进一步研究和应用面临的挑战,包括计算和数据要求、模型评估以及潜在的隐私风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e25/11958445/b88b7ef9e8e2/424_2024_3016_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验