Suppr超能文献

利用深度神经网络实现快速准确的无 MRI 淀粉样蛋白脑 PET 定量。

Fast and Accurate Amyloid Brain PET Quantification Without MRI Using Deep Neural Networks.

机构信息

Brightonix Imaging Inc., Seoul, Korea.

Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.

出版信息

J Nucl Med. 2023 Apr;64(4):659-666. doi: 10.2967/jnumed.122.264414. Epub 2022 Nov 3.

Abstract

This paper proposes a novel method for automatic quantification of amyloid PET using deep learning-based spatial normalization (SN) of PET images, which does not require MRI or CT images of the same patient. The accuracy of the method was evaluated for 3 different amyloid PET radiotracers compared with MRI-parcellation-based PET quantification using FreeSurfer. A deep neural network model used for the SN of amyloid PET images was trained using 994 multicenter amyloid PET images (367 F-flutemetamol and 627 F-florbetaben) and the corresponding 3-dimensional MR images of subjects who had Alzheimer disease or mild cognitive impairment or were cognitively normal. For comparison, PET SN was also conducted using version 12 of the Statistical Parametric Mapping program (SPM-based SN). The accuracy of deep learning-based and SPM-based SN and SUV ratio quantification relative to the FreeSurfer-based estimation in individual brain spaces was evaluated using 148 other amyloid PET images (64 F-flutemetamol and 84 F-florbetaben). Additional external validation was performed using an unseen independent external dataset (30 F-flutemetamol, 67 F-florbetaben, and 39 F-florbetapir). Quantification results using the proposed deep learning-based method showed stronger correlations with the FreeSurfer estimates than SPM-based SN using MRI did. For example, the slope, -intercept, and values between SPM and FreeSurfer for the global cortex were 0.869, 0.113, and 0.946, respectively. In contrast, the slope, -intercept, and values between the proposed deep learning-based method and FreeSurfer were 1.019, -0.016, and 0.986, respectively. The external validation study also demonstrated better performance for the proposed method without MR images than for SPM with MRI. In most brain regions, the proposed method outperformed SPM SN in terms of linear regression parameters and intraclass correlation coefficients. We evaluated a novel deep learning-based SN method that allows quantitative analysis of amyloid brain PET images without structural MRI. The quantification results using the proposed method showed a strong correlation with MRI-parcellation-based quantification using FreeSurfer for all clinical amyloid radiotracers. Therefore, the proposed method will be useful for investigating Alzheimer disease and related brain disorders using amyloid PET scans.

摘要

本文提出了一种新的方法,用于使用基于深度学习的空间归一化(SN)对 PET 图像进行自动定量分析,该方法不需要患者的 MRI 或 CT 图像。与使用 FreeSurfer 进行基于 MRI 分割的 PET 定量相比,评估了该方法对 3 种不同淀粉样蛋白 PET 示踪剂的准确性。使用来自 994 例多中心淀粉样蛋白 PET 图像(367 例 F-flutemetamol 和 627 例 F-florbetaben)和有阿尔茨海默病或轻度认知障碍或认知正常的受试者的相应三维 MR 图像训练用于淀粉样蛋白 PET 图像 SN 的深度神经网络模型。为了比较,还使用版本 12 的统计参数映射程序(基于 SPM 的 SN)进行了 PET SN。使用 148 例其他淀粉样蛋白 PET 图像(64 例 F-flutemetamol 和 84 例 F-florbetaben)评估了基于深度学习和 SPM 的 SN 以及 SUV 比定量与基于 FreeSurfer 的个体脑区估计的准确性。使用未见过的独立外部数据集(30 例 F-flutemetamol、67 例 F-florbetaben 和 39 例 F-florbetapir)进行了额外的外部验证。与使用 MRI 的 SPM 相比,使用所提出的基于深度学习的方法进行定量分析与 FreeSurfer 的估计值相关性更强。例如,全局皮质的 SPM 和 FreeSurfer 之间的斜率、-截距和 值分别为 0.869、0.113 和 0.946。相比之下,基于深度学习的方法和 FreeSurfer 之间的斜率、-截距和 值分别为 1.019、-0.016 和 0.986。外部验证研究还表明,在没有 MRI 的情况下,该方法的性能优于带有 MRI 的 SPM。在大多数脑区,基于深度学习的方法在线性回归参数和组内相关系数方面优于 SPM SN。我们评估了一种新的基于深度学习的 SN 方法,该方法允许在没有结构 MRI 的情况下对淀粉样蛋白脑 PET 图像进行定量分析。对于所有临床淀粉样蛋白示踪剂,使用所提出的方法进行定量分析的结果与基于 FreeSurfer 的 MRI 分割定量具有很强的相关性。因此,该方法将有助于使用淀粉样蛋白 PET 扫描研究阿尔茨海默病和相关脑疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0525/10071781/003c0cf48644/jnumed.122.264414absf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验