Candia-Rivera Diego, Chavez Mario, De Vico Fallani Fabrizio
Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France.
Netw Neurosci. 2024 Jul 1;8(2):557-575. doi: 10.1162/netn_a_00369. eCollection 2024.
In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
近年来,对脑心相互作用的研究兴趣日益浓厚。已经提出了一些方法学进展来研究大脑和心脏如何进行通信,从而对一些神经功能有了新的认识。然而,大多数框架只关注一个脑区与心跳动态的相互作用,而忽略了大脑具有功能网络,这些网络会根据内部和外部需求动态变化。我们提出了一个新的框架,用于从无创电生理记录评估皮层网络和心脏动态之间的功能相互作用。我们关注从脑电图数据的连接矩阵中获得的波动网络指标。具体而言,我们量化了心脏交感神经 - 迷走神经活动与大脑网络聚类、效率、 assortativity和模块化指标之间的耦合。我们使用开源数据集验证了我们的提议:一个涉及健康个体的情绪诱发,另一个来自帕金森病患者的静息态数据。我们的结果表明,皮层网络分离与心脏动态之间的联系可能为健康参与者的情感状态以及帕金森病的网络生理学改变提供有价值的见解。通过考虑多个网络属性,这个框架可能会提供对脑心相互作用更全面的理解。我们的研究结果在开发用于诊断和认知/运动功能评估的生物标志物方面具有前景。