Suppr超能文献

精准测量脑血流量:使用物理信息神经网络对婴儿进行灌注磁共振成像分析

PINNing cerebral blood flow: analysis of perfusion MRI in infants using physics-informed neural networks.

作者信息

Galazis Christoforos, Chiu Ching-En, Arichi Tomoki, Bharath Anil A, Varela Marta

机构信息

Department of Computing, Imperial College London, London, United Kingdom.

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

出版信息

Front Netw Physiol. 2025 Feb 14;5:1488349. doi: 10.3389/fnetp.2025.1488349. eCollection 2025.

Abstract

Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral perfusion measurement, which is crucial in detecting and managing neurological issues in infants born prematurely or after perinatal complications. However, cerebral blood flow (CBF) estimation in infants using ASL remains challenging due to the complex interplay of network physiology, involving dynamic interactions between cardiac output and cerebral perfusion, as well as issues with parameter uncertainty and data noise. We propose a new spatial uncertainty-based physics-informed neural network (PINN), SUPINN, to estimate CBF and other parameters from infant ASL data. SUPINN employs a multi-branch architecture to concurrently estimate regional and global model parameters across multiple voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can reliably estimate CBF (relative error ), bolus arrival time (AT) , and blood longitudinal relaxation time (-4.4 28.9), surpassing parameter estimates performed using least squares or standard PINNs. Furthermore, SUPINN produces physiologically plausible spatially smooth CBF and AT maps. Our study demonstrates the successful modification of PINNs for accurate multi-parameter perfusion estimation from noisy and limited ASL data in infants. Frameworks like SUPINN have the potential to advance our understanding of the complex cardio-brain network physiology, aiding in the detection and management of diseases. Source code is provided at: https://github.com/cgalaz01/supinn.

摘要

动脉自旋标记(ASL)磁共振成像(MRI)能够进行脑灌注测量,这对于检测和处理早产或围产期并发症后出生的婴儿的神经问题至关重要。然而,由于网络生理学的复杂相互作用,包括心输出量与脑灌注之间的动态相互作用以及参数不确定性和数据噪声等问题,使用ASL估计婴儿的脑血流量(CBF)仍然具有挑战性。我们提出了一种新的基于空间不确定性的物理信息神经网络(PINN),即SUPINN,用于从婴儿ASL数据中估计CBF和其他参数。SUPINN采用多分支架构来同时估计多个体素上的区域和全局模型参数。它计算区域空间不确定性以权衡信号。SUPINN能够可靠地估计CBF(相对误差)、团注到达时间(AT)和血液纵向弛豫时间(-4.4 28.9),超过了使用最小二乘法或标准PINN进行的参数估计。此外,SUPINN生成生理上合理的空间平滑CBF和AT图。我们的研究证明了对PINN进行成功修改,以便从婴儿嘈杂且有限的ASL数据中进行准确的多参数灌注估计。像SUPINN这样的框架有潜力推进我们对复杂的心脑网络生理学的理解,有助于疾病的检测和管理。源代码可在以下网址获取:https://github.com/cgalaz01/supinn

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e36/11868054/70908160dcba/fnetp-05-1488349-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验