Suppr超能文献

一种用于早期胃癌浸润深度实时内镜预测的优化人工智能系统。

An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer.

作者信息

Kim Jie-Hyun, Oh Sang-Il, Han So-Young, Keum Ji-Soo, Kim Kyung-Nam, Chun Jae-Young, Youn Young-Hoon, Park Hyojin

机构信息

Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea.

Waycen Inc., Seoul 03722, Republic of Korea.

出版信息

Cancers (Basel). 2022 Dec 5;14(23):6000. doi: 10.3390/cancers14236000.

Abstract

We previously constructed a VGG-16 based artificial intelligence (AI) model (image classifier [IC]) to predict the invasion depth in early gastric cancer (EGC) using endoscopic static images. However, images cannot capture the spatio-temporal information available during real-time endoscopy-the AI trained on static images could not estimate invasion depth accurately and reliably. Thus, we constructed a video classifier [VC] using videos for real-time depth prediction in EGC. We built a VC by attaching sequential layers to the last convolutional layer of IC 2, using video clips. We computed the standard deviation (SD) of output probabilities for a video clip and the sensitivities in the manner of frame units to observe consistency. The sensitivity, specificity, and accuracy of IC 2 for static images were 82.5%, 82.9%, and 82.7%, respectively. However, for video clips, the sensitivity, specificity, and accuracy of IC 2 were 33.6%, 85.5%, and 56.6%, respectively. The VC performed better analysis of the videos, with a sensitivity of 82.3%, a specificity of 85.8%, and an accuracy of 83.7%. Furthermore, the mean SD was lower for the VC than IC 2 (0.096 vs. 0.289). The AI model developed utilizing videos can predict invasion depth in EGC more precisely and consistently than image-trained models, and is more appropriate for real-world situations.

摘要

我们之前构建了一个基于VGG - 16的人工智能(AI)模型(图像分类器[IC]),用于使用内镜静态图像预测早期胃癌(EGC)的浸润深度。然而,图像无法捕捉实时内镜检查过程中可用的时空信息——在静态图像上训练的AI无法准确可靠地估计浸润深度。因此,我们构建了一个视频分类器[VC],用于EGC的实时深度预测。我们通过使用视频片段,在IC 2的最后一个卷积层附加顺序层来构建VC。我们计算了视频片段输出概率的标准差(SD)以及以帧为单位的敏感度,以观察一致性。IC 2对静态图像的敏感度、特异度和准确率分别为82.5%、82.9%和82.7%。然而,对于视频片段,IC 2的敏感度、特异度和准确率分别为33.6%、85.5%和56.6%。VC对视频的分析表现更好,敏感度为82.3%,特异度为85.8%,准确率为83.7%。此外,VC的平均SD低于IC 2(0.096对0.289)。利用视频开发的AI模型比基于图像训练的模型能更精确、更一致地预测EGC的浸润深度,并且更适合实际应用场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9741000/73305ca5cc39/cancers-14-06000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验