UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London, WC1E 6DD, UK.
Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
Genome Med. 2024 Jul 2;16(1):85. doi: 10.1186/s13073-024-01349-w.
Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan.
Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture.
We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo.
Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.
在细胞水平上抑制或减缓衰老特征被认为是提高生物体寿命和健康跨度的一种途径。因此,人们对抗衰老药物的发现非常感兴趣。然而,这目前需要费力和冗长的寿命分析。在这里,我们提出了一种新的筛选方法,用于快速发现能够抑制细胞群体衰老的化合物,并延长体内寿命。
使用 Illumina 甲基化阵列,我们监测了成年原代人类细胞在培养中长期传代过程中伴随的 DNA 甲基化变化。这使我们能够开发、测试和验证 CellPopAge Clock,这是一种具有潜在算法的表观遗传时钟,在其设计中是独特的,旨在检测体外的抗衰老化合物。此外,我们还测量了衰老标志物,并在果蝇体内进行了寿命实验,以进一步验证我们发现新型抗衰老化合物的方法。最后,我们将我们的表观遗传时钟与其他可用的表观遗传时钟进行基准测试,以巩固其在培养中的原代细胞中的有用性和专业化。
我们开发了一种新的表观遗传时钟,即 CellPopAge Clock,用于准确监测人群中成年原代人类细胞的年龄。我们发现,CellPopAge Clock 可以检测到用雷帕霉素或 trametinib 处理的人类原代细胞基于传代的衰老减速,这是两种已被证实的长寿药物。然后,我们利用 CellPopAge Clock 作为筛选工具,鉴定了能延缓细胞群体衰老的化合物,发现了新型抗衰老药物 torin2 和 dactolisib (BEZ-235)。我们证明,用抗衰老化合物处理的人类原代细胞的表观遗传衰老延迟伴随着衰老和衰老生物标志物的减少。最后,我们通过利用专门配制的 holidic 培养基在果蝇体内扩大了我们的筛选平台,以提高药物的生物利用度。我们表明,新型抗衰老药物 torin2 和 dactolisib (BEZ-235) 可以延长体内寿命。
我们的方法扩展了 CpG 甲基化谱分析的范围,使用体外的人类细胞和体内快速准确地检测药物的抗衰老潜力,提供了一种新的加速发现平台,用于测试备受追捧的抗衰老化合物和 geroprotectors。