Chi Ping-Feng, Chuang Yung-Lan, Yu Zide, Zhang Jing-Wen, Wang Jing-Jie, Lee Ming-Lun, Sheu Jinn-Kong
Department of Photonics, National Cheng Kung University, Tainan City 70101, Taiwan.
Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City 70101, Taiwan.
Nanotechnology. 2024 Jul 24;35(41). doi: 10.1088/1361-6528/ad5db7.
This study employs cold-wall chemical vapor deposition to achieve the growth of MoTethin films on 4-inch sapphire substrates. A two-step growth process is utilized, incorporating MoOand Te powder sources under low-pressure conditions to synthesize MoTe. The resultant MoTethin films exhibit a dominant 1T' phase, as evidenced by a prominent Raman peak at 161 cm. This preferential 1T' phase formation is attributed to controlled manipulation of the second-step growth temperature, essentially the reaction stage between Te vapor and the pre-deposited MoOlayer. Under these optimized growth conditions, the thickness of the continuous 1T'-MoTefilms can be precisely tailored within the range of 3.5-5.7 nm (equivalent to 5-8 layers), as determined by atomic force microscopy depth profiling. Hall-effect measurements unveil a typical hole concentration and mobility of 0.2 cmVsand 7.9 × 10cm, respectively, for the synthesized few-layered 1T'-MoTefilms. Furthermore, Ti/Al bilayer metal contacts deposited on the few-layered 1T'-MoTefilms exhibit low specific contact resistances of approximately 1.0 × 10Ω cmestimated by the transfer length model. This finding suggests a viable approach for achieving low ohmic contact resistance using the 1T'-MoTeintermediate layer between metallic electrodes and two-dimensional semiconductors.
本研究采用冷壁化学气相沉积法在4英寸蓝宝石衬底上实现MoTe薄膜的生长。利用两步生长工艺,在低压条件下引入MoO和Te粉末源以合成MoTe。所得的MoTe薄膜呈现出占主导的1T'相,在161 cm处有一个明显的拉曼峰证明了这一点。这种优先形成1T'相归因于对第二步生长温度的可控操纵,本质上是Te蒸气与预沉积的MoO层之间的反应阶段。在这些优化的生长条件下,通过原子力显微镜深度剖析确定,连续的1T'-MoTe薄膜的厚度可以在3.5 - 5.7 nm(相当于5 - 8层)范围内精确调整。霍尔效应测量表明,合成的少层1T'-MoTe薄膜的典型空穴浓度和迁移率分别为0.2 cmVs和7.9×10 cm。此外,沉积在少层1T'-MoTe薄膜上的Ti/Al双层金属接触通过转移长度模型估计显示出约1.0×10Ω cm的低比接触电阻。这一发现表明了一种在金属电极和二维半导体之间使用1T'-MoTe中间层实现低欧姆接触电阻的可行方法。