Suppr超能文献

人工智能自动识别腹腔镜胰十二指肠切除术术中视频的手术阶段。

Artificial intelligence automated surgical phases recognition in intraoperative videos of laparoscopic pancreatoduodenectomy.

机构信息

WestChina-California Research Center for Predictive Intervention, Sichuan University West China Hospital, Chengdu, China.

Division of Pancreatic Surgery, Department of General Surgery, Sichuan University West China Hospital, No. 37, Guoxue Alley, Chengdu, 610041, China.

出版信息

Surg Endosc. 2024 Sep;38(9):4894-4905. doi: 10.1007/s00464-024-10916-6. Epub 2024 Jul 3.

Abstract

BACKGROUND

Laparoscopic pancreatoduodenectomy (LPD) is one of the most challenging operations and has a long learning curve. Artificial intelligence (AI) automated surgical phase recognition in intraoperative videos has many potential applications in surgical education, helping shorten the learning curve, but no study has made this breakthrough in LPD. Herein, we aimed to build AI models to recognize the surgical phase in LPD and explore the performance characteristics of AI models.

METHODS

Among 69 LPD videos from a single surgical team, we used 42 in the building group to establish the models and used the remaining 27 videos in the analysis group to assess the models' performance characteristics. We annotated 13 surgical phases of LPD, including 4 key phases and 9 necessary phases. Two minimal invasive pancreatic surgeons annotated all the videos. We built two AI models for the key phase and necessary phase recognition, based on convolutional neural networks. The overall performance of the AI models was determined mainly by mean average precision (mAP).

RESULTS

Overall mAPs of the AI models in the test set of the building group were 89.7% and 84.7% for key phases and necessary phases, respectively. In the 27-video analysis group, overall mAPs were 86.8% and 71.2%, with maximum mAPs of 98.1% and 93.9%. We found commonalities between the error of model recognition and the differences of surgeon annotation, and the AI model exhibited bad performance in cases with anatomic variation or lesion involvement with adjacent organs.

CONCLUSIONS

AI automated surgical phase recognition can be achieved in LPD, with outstanding performance in selective cases. This breakthrough may be the first step toward AI- and video-based surgical education in more complex surgeries.

摘要

背景

腹腔镜胰十二指肠切除术(LPD)是最具挑战性的手术之一,具有较长的学习曲线。人工智能(AI)自动识别术中视频中的手术阶段在外科教育中有许多潜在的应用,有助于缩短学习曲线,但在 LPD 中尚未有研究取得这一突破。在此,我们旨在建立 AI 模型以识别 LPD 中的手术阶段,并探索 AI 模型的性能特征。

方法

在一个外科团队的 69 个 LPD 视频中,我们使用 42 个视频用于建立模型,并在分析组中使用其余 27 个视频评估模型的性能特征。我们标注了 LPD 的 13 个手术阶段,包括 4 个关键阶段和 9 个必要阶段。两位微创胰腺外科医生对所有视频进行了标注。我们基于卷积神经网络为关键阶段和必要阶段识别建立了两个 AI 模型。AI 模型的整体性能主要由平均准确率(mAP)决定。

结果

在建立组的测试集中,AI 模型的总体 mAP 分别为关键阶段和必要阶段的 89.7%和 84.7%。在 27 个视频分析组中,总体 mAP 分别为 86.8%和 71.2%,最大 mAP 分别为 98.1%和 93.9%。我们发现模型识别错误与外科医生标注差异之间的共性,并且在解剖变异或病变累及邻近器官的情况下,AI 模型表现不佳。

结论

LPD 中的 AI 自动手术阶段识别可以实现,在选择病例中具有出色的性能。这一突破可能是在更复杂手术中基于 AI 和视频的手术教育的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验